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Abstract This paper presents a two-dimensional (2D)–
three-dimensional (3D) hybrid stabilized finite element
method that enables us to predict a propagation process of
tsunami generated in a hypocentral region, which ranges
from offshore propagation to runup to urban areas, with
high accuracy and relatively low computational costs. To be
more specific, the 2D shallow water equation is employed
to simulate the propagation of offshore waves, while the 3D
Navier–Stokes equation is employed for the runup in urban
areas. The stabilized finite element method is utilized for
numerical simulations for both of the 2Dand 3Ddomains that
are independently discretized with unstructured meshes. The
multi-point constraint and transmission methods are applied
to satisfy the continuity of flow velocities and pressures at
the interface between the resulting 2D and 3D meshes, since
neither their spatial dimensions nor node arrangements are
consistent. Numerical examples are presented to demonstrate
the performance of the proposed hybrid method to simulate
tsunami behavior, including offshore propagation and runup
to urban areas, with substantially lower computation costs in
comparison with full 3D computations.
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1 Introduction

There is no end to inundation disasters caused by tsunami,
storm surges, floods and so on. Since these disasters threaten
people’s lives and destroy their properties, it is quite impor-
tant to accurately predict the flooded areas by some kind
of method. Although model experiments were mainly con-
ducted in the past, recent years have seen a replacement by
numerical simulation in predicting flooded areas as well as
the extent of damage. This fact is due to both the improved
performance of computer hardware and accuracy of numer-
ical analysis techniques, as well as the development and
widespread use of detailed topographic and residential digital
maps [1–4].

For simulation of tsunami runup, in particular, which
requires covering a broad range of tsunami behavior from
offshore propagation to runup to land, numerical analysis
methods based on the shallow water theory with an cartesian
grid are widely used because of their technical simplic-
ity and low computation costs [5,6]. However, a tsunami
runup behavior in urban areas reveals three-dimensional
(3D) characteristics in general, and involves highly com-
plex free-surface flows that are caused by the effects of
structures and landscapes, it is obviously inappropriate to
apply the two-dimensional (2D) shallow water approxima-
tion for the purpose of evaluating the fluid force acting
on structures. Therefore, numerical analyses based on the
Navier–Stokes equation [7], which are applicable for 3D
complex free-surface flows, have become common in recent
years. Nonetheless, 3D simulations from offshore to runup
areas inevitably require a significant increase in the degree
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of freedom (DOF), making this approach seem unrealistic in
terms of computational costs.

To overcome this problem, several 2D–3Dhybridmethods
have been proposed in the literature [8–11]. Those meth-
ods are designed to enable us to perform 3D analyses in
the regions where 2D approximation is impossible, such as
around tsunami breakwaters or buildings, while reflecting
shallow water analysis results. However, since most of the
methods proposed in the past are on the basis of using carte-
sian grids for both the 2D and 3D regions, the exact geometry
of structures cannot be reflected in the numerical analysis
and, as a result, desired accuracy is not obtained in evalu-
ating fluid forces acting on the structures. To evaluate the
fluid forces properly, the surrounding flow regimes should
be accurately analyzed, and to do this, approaches with an
boundary-fitted grid capable of representing the shapes of
structures must be employed.

In this study, employing the stabilized finite element
method (FEM) to accurately evaluate the fluid forces act-
ing on structures, we propose its 2D–3D hybrid version
that enables us predict a propagation process of tsunami,
which ranges from offshore propagation to runup to urban
areas, with high accuracy and relatively low computational
costs. For a numerical analysis of offshore wave propagation,
the 2D shallow water equation is used and the Streamline
Upwind Petrov Galerkin (SUPG) method is employed for
their finite element discretization. For an analysis tsunami
runup, the 3D Navier-Strokes equation is discreteized by the
SUPG/pressure stabilizing Petrov Galerkin (PSPG) method
and the VOF method is employed to capture the free-surface
evolutions. Since the proposed method allows us to utilize
unstructured grids with triangular and tetrahedral elements
for the 2D and 3D regions, respectively, possible errors
caused by the approximation of shape representation can
be reduced to some extent. For stable numerical analyses
with the stabilized FEM, the implicit scheme is employed
for the temporal discretization of both the 2D shallow water
and 3D Navier–Stokes equations. The respectively derived
discretized 2D and 3D equations are solved simultaneously
with the help of the multiple point constraint (MPC) tech-
nique [12] to impose the continuity conditions of both the
velocities and pressures at the interface between the 2D and
3D domains. To the best of the authors’ knowledge, there
have been no reports with the same approach. Even if com-
mercial software is utilized with MPCs, care is necessary to
satisfy the continuity of the velocity in the vertical direction.
Needless to say, the node arrangements at their interface need
not be conformable.

In the subsequent sections, after providing the governing
equations and their discretization, we explain in detail the
MPC and transmission techniques implemented into the 2D–
3D hybrid-type stabilized FEM that is the combination of
the standard stabilized FEMs for shallow water and Navier–

Stokes flows. A simple numerical example is presented to
verify the capability of the implemented MPC function to
impose the continuity conditions at the 2D–3D interface. The
performance of the proposed method is also demonstrated
by estimating the disaster reduction effect of a submerged
breakwater in an urban area attacked by tsunami runup.

2 Stablized finite element method

After the governing equations for the 3DNavier–Stokes flow
field and the 2D shallow water flow field are presented,
the stabilized finite element method (FEM) is applied to
obtain the corresponding discretized equations. The Crank–
Nicolson method is employed for temporal discretization for
these governing equations.TheVOFmethod that is employed
to capture the 3D free-surface flow is also outlined.

2.1 Governing equations

Assuming an incompressible viscous fluid, we employ the
following set of the Navier–Stokes equation and continuity
equation to describe the 3D flow field in an urban area:

ρ
(∂u

∂t
+ u · ∇u − f

)
− ∇ · σ (u, p) = 0 (1)

∇ · u = 0 (2)

where ρ, u = [uns, vns, wns]T, p, f and σ are the fluid mass
density, flow velocity vector, pressure, body force vector, and
stress tensor, respectively. Assuming a Newtonian fluid, the
stress field is determined by the following constitutive law:

σ = −p I + 2με(u) (3)

Here, μ is the viscosity coefficient and ε(u) is the rate of
deformation tensor defined in the equation below:

ε(u) = 1

2

(
∇u + (∇u)T

)
(4)

The shallow water approximation is applied for the
tsunami behavior of offshore wave propagations so that the
2D shallow water equation can be used up to the onset of
runup. For the non-conserved system, the set of the shallow
water equation is given as

∂U
∂t

+ Aα

∂U
∂xα

− ∂

∂xα

(
Kαβ

∂U
∂xβ

)
− R = 0 (5)

where the summation convention is applied for α, β = 1, 2.
Here, we have definedU = [h, usw, vsw]T as the set of non-
conserved variables, in which h is the total water height, and
usw and vsw are the components of the average flow velocity;
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Fig. 1 Coordinate system for shallow-water problem

see Fig. 1. Also, Aα is the matrix to form the advection term
such that

A1 =
⎡
⎣
usw h 0
g usw 0
0 0 usw

⎤
⎦ , A2 =

⎡
⎣

vsw 0 h
0 vsw 0
g 0 vsw

⎤
⎦ (6)

and Kαβ and R are defined respectively as:

K 11 = ν

⎡
⎣
0 0 0
0 2 0
0 0 1

⎤
⎦ , K 12 = ν

⎡
⎣
0 0 0
0 0 0
0 1 0

⎤
⎦ (7)

K 21 = ν

⎡
⎣
0 0 0
0 0 1
0 0 0

⎤
⎦ , K 22 = ν

⎡
⎣
0 0 0
0 1 0
0 0 2

⎤
⎦ (8)

R =

⎡
⎢⎢⎢⎣

0

−g
∂zb
∂x

− u∗
h
usw

−g
∂zb
∂y

− u∗
h

vsw

⎤
⎥⎥⎥⎦ , u∗ = gn2

√
u2sw + v2sw

h1/3
(9)

where g, ν, zb, and n respectively represent the acceleration
due to gravity, the eddy viscosity coefficient, the altitude of
the bottom surface, and theManning’s roughness coefficient.

2.2 Stabilized finite element method

The application of the SUPG/PSPG method [13,14] to the
governing equations for the 3D flow field, Eqs.(1) and (2),
yields the following discretized equation of the stabilized
FEM.

ρ

∫

Ωns

wh · ρ

(
∂uh

∂t
+ uh · ∇uh − f

)
dΩ

+
∫

Ωns

ε(wh) : σ (uh, ph) dΩ +
∫

�ns

qh∇ · uh dΩ

+
nel∑
e=1

∫

Ωe
ns

{
τ nssupgu

h · ∇wh + τ nspspg
1

ρ
∇q

}

×
{
ρ

(
∂uh

∂t
+ uh · ∇uh − f

)
− ∇ · σ (uh, ph)

}
dΩ

+
nel∑
e=1

∫

Ωe
ns

τ nscont∇ · whρ∇ · uh dΩ = 0 (10)

where Ωns ∈ R
3 is the 3D analysis domain for the Navier–

Stokes equation. Here, uh and ph respectively represent the
finite element (FE) approximations of the velocity and pres-
sure fields, while wh and qh are the approximations of the
weighting functions with respect to the momentum equation
and the continuity equation, respectively. Also, the fourth
term of this discretized equation arises from the SUPG and
PSPG methods, which are respectively introduced to stabi-
lize the advection-induced unstable behavior and to suppress
the pressure oscillation, and the fifth term is introduced for
shock-capturing [15] to avoid the numerical instability of free
surfaces. These stabilization terms are evaluated element-
wise with nel being the number of elements, and τ nssupg, τ

ns
pspg

and τ nscont involves the stabilization parameters, which are
respectively defined as follows:

τ nssupg =
[(

2


t

)2

+
(
2||uh ||
he

)2

+
(
4ν

h2e

)2
]− 1

2

(11)

τ nspspg = τ nssupg (12)

τcont = he
2

||uh ||ξ (Ree) (13)

Ree = ||uh ||he
2ν

(14)

ξ (Ree) =
{ Ree

3
, Ree ≤ 3

1, Ree > 3
(15)

where 
t, he, ν, and Ree are the time increment, the char-
acteristic element length, the kinematic viscosity coefficient,
and the Reynolds number of the element, respectively.

On the other hand, the shallow water Eq. (5) can be dis-
cretized with the SUPG method [16] as

∫

Ωsw

Uh∗ ·
(

∂Uh

∂t
+ Ah

α

∂Uh

∂xα

− Rh

)
d�

+
∫

Ωsw

(
∂Uh∗
∂xα

)
·
(
K h

αβ

∂Uh∗
∂xβ

)
dΩ

+
nel∑
e=1

∫

Ωe
sw

τ swsupg

(
Ah

β

)T (
∂Uh∗
∂xβ

)

·
(

∂Uh

∂t
+ Ah

α

∂Uh

∂xα

− Rh

)
dΩ

+
nel∑
e=1

∫

Ωe
sw

τ swcont

(
∂Uh∗
∂xα

)
·
(

∂Uh

∂xα

)
= 0 (16)
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where Ωsw ∈ R
2 represents the analysis domain of the 2D

shallow water equation. Here,Uh, Ah
α, K h

αβ and Rh
α (α, β =

1, 2) contain the FE approximations of the velocity fields
usw and vsw, and Uh∗ is the FE approximation of U∗, which
is theweighting function ofU . The third termof this equation
arises from the SUPGmethod to stabilize the unstable behav-
ior due to the dominance of advection, and the fourth term
is introduced for shock-capturing term [17] to avoid numeri-
cal instability of free surfaces. The stabilization parameters,
τ swsupg and τ swcont, in these terms are respectively defined as

τ swsupg =
⎡
⎣

(
2


t

)2

+
(
2||ūh ||
he

)2

+
(
4ν

h2e

)2
⎤
⎦

− 1
2

(17)

τ swcont = he
2

||ūh || z (18)

with

z =
{ κk

3
, κk ≤ 3

1, κk > 3
(19)

Here, we have introduced the following definitions: ||ūh || =√||uhsw||2 + c2, c = √
gh, κk = ||ūh ||he/ν and uhsw =

[usw, vsw]T .
We impose the MPC on the nodal solutions of the FE

equations, resulting from (10) or (16), so that the continuity
conditions of flow velocities and pressures must be satisfied
at the 2D–3D interface. The details are presented in the next
section.

2.3 VOF method for free-surface capturing

There are two kinds of approaches to determine the geom-
etry of a free surface that is an interface between the gas
(air) and the liquid (water) whose 3d motions are governed
by Eqs. (1) and (2). One of them is the class of interface-
capturing approaches that employ the Euler technique with
a fixed mesh, and the other is the class of interface-tracking
approaches that take the Lagrange technique with a moving
mesh. In this study,we employ theVOFmethod,which is one
of the interface-capturingmethods, since our target problems
involve breaking waves that have complex free surfaces.

In the VOF method, the movement of a free-surface is
defined as the time-variation of the VOF or interface function
φ that is governed by the following advection equation:

∂φ

∂t
+ u · ∇φ = 0 (20)

where φ takes 0.0 for gas and 1.0 for liquid, while the inter-
mediate values represent their interface. With the values of
the VOF function, the density ρ and the viscosity coefficient
μ at any point of the fluid can be expressed as

ρ = ρlφ + ρg(1 − φ) (21)

μ = μlφ + μg(1 − φ) (22)

where ρl and ρg are the densities of liquid (water) and gas
(air), and μl and μg are the corresponding viscosity coeffi-
cients.

By applying the stabilized FE approximation with the
SUPG method [15] to the governing Eq. (20) for the VOF
function, we obtain the discretized equation as follows:

∫

Ωns

φh∗
(

∂φh

∂t
+ uh · ∇φ

)
dΩ

+
nel∑
e=1

∫

Ωe
ns

τφ uh · ∇φh∗
(

∂φh

∂t
+ uh · ∇φh

)
dΩ

+
n∑

e=1

∫

Ωe
ns

τIC ∇φh∗ · ∇φh dΩ = 0 (23)

where φh and φh∗ are the FE approximations of the VOF
function φ and its weighting function. Also, τφ and τIC are
the stabilization parameters defined by

τφ =
[(

2


t

)2

+
(
2||uh ||
he

)2
]− 1

2

(24)

τIC = he
2

||uh || (25)

The last term of Eq. (23) is introduced to suppress
the numerical undershoots and overshoots of the inter-
face function around the interface. The so-called interface-
sharpening/mass-conservation algorithm proposed in [15]
enables us to not only sharpen the interface, but also sat-
isfy the conservation of mass for the fluids by appropriately
selecting the stabilization parameter Eq. (25).

On the interface between the 2D and 3D domain, the posi-
tion of the free surface on its 3D domain side is equalized
to the water height of its 2D domain side, which is the solu-
tion of the shallow water equation. Then, the VOF value of
the free surface is set at 0.5 so that the VOF values along
the interface curve are determined accordingly. Note that
the advection velocity uh in Eq. (23) is the solution of the
FE equation obtained by integrating Eqs.(10) or (16) with
the help of MPC method, which is explained the next sec-
tion.
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3 Techniques for 2D-3D hybrid version
of stabilized FEM

We have to simultaneously solve the 2D shallow water equa-
tion for tsunami propagations of offshore areas (Ωsw) and
the 3D Navier–Stokes equation (and continuity equation) for
tsunami runup inurban areas (Ωns). Since the implicitmethod
is adopted for temporal discretization, the 2D-3D hybrid sta-
bilized FEM proposed in this study can be established by the
integration of (10) or (16) with an appropriate way to satisfy
the continuity conditions of flow velocities and pressures at
the interface between the 2D and 3D domains. However, if a
mesh for each domain is generated independently, not only
the number of DOF at each node but also the node positions
can be different from each other. In this study, in order to
ensure the continuity, we employ the so-calledMPCmethod,
which enables us to keep the original forms of FE equations
for the 2D and 3D domains as much as possible.

3.1 MPC method

The discretized equation of stabilized FEM is replaced as
follows:

Ax = f (26)

where A is the left-hand side matrix, x is unknown vector,
f is right-hand side vector. In order to simplify the descrip-
tion of the MPC method, the unknown vector x is given
as x = [u1, u2, u3, u4, u5]T . And the constraint condition
(MPC conditions) is defined as:

u5 = u4 (27)

where, we have defined u5 as a slave node and u4 as a mas-
ter node. From constraint condition Eq. (27), A new set of
degrees of freedom x̂ is established by removing all slave
freedoms from x. x̂ is defined in the equation below:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1
u2
u3
u4
u5

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

û1
û2
û3
û4

⎫⎪⎪⎬
⎪⎪⎭

= T x̂ (28)

where T is transformation matrix. By substituting Eq. (26)
for Eq. (28), both side of Eq. (26) are multiplied by T T is
expressed by the following equation.

T T AT x̂ = T T f (29)

The MPC condition is satisfied by solving Eq. (29). Detailed
MPC condition of the hybrid method is explained in the next
section.

Fig. 2 Joint region between the 2D and 3D regions

Fig. 3 MPC condition for flow velocities between conforming meshes

3.2 MPC for flow velocities

Let us first consider the case as illustrated in Fig. 2, in which
the node positions or arrangements in the FE meshes of
the 2D and 3D domains, Ωsw and Ωns, conform. In this
case, the flow velocities and pressures must be continuous at
the interface of the two separate meshes. More specifically,
regarding the nodes on the interface between the two regions,
we impose the following MPC conditions (see Fig. 3):

{
ucns (k) = ucsw (k = 1, · · · , N c

z )

vcns (k) = vcsw (k = 1, · · · , N c
z )

(30)

to ensure that the flow velocity components in the x
and y directions of a certain node of Ωsw are equal to
those of all the nodes of Ωns aligned in the z-direction
(water depth direction) that have the same x and y coor-
dinates. Here, N c

z is the total number of the nodes on
the interface belonging to Ωns that are aligned in the z-
or vertical direction and therefore have the same x and
y coordinates. Also, ucns(k) and vcns(k) represent the veloc-
ity components of these nodes on the interface of Ωns,
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Fig. 4 MPC condition between non-conforming meshes

while ucsw and vcsw are the components of the average flow
velocity of a certain node on the interface belonging to
Ωsw.

Next, we consider the case as shown in Fig. 4, in which
the node positions on the interfaces belonging to Ωsw and
Ωns do not conform with each other. Since the x and
y coordinates of these nodes are different, we build the
positional relationships of the nodes on the interfaces belong-
ing to Ωsw and Ωns to impose the continuity conditions
for the velocity components. For example, let us focus
our attention to node 2 of Ωns that is located between
nodes 1 and 2 of Ωsw as shown in Fig. 4. Since this
node of Ωns corresponds to Point A of Ωsw, velocity
component uns2 can be interpolated with velocity com-
ponents usw1 and usw2 of nodes 1 and 2 of Ωsw such
that:

uns2 = Ne
1 (xA, yA)usw1 + Ne

2 (xA, yA)usw2 (31)

where Ne
1 (xA, yA) and Ne

2 (xA, yA) are the shape functions
of the line element on the interface and evaluated at coordi-
nates xA and yA of Point A. This relationship is a standard
MPC equation and therefore is added to the set of the 2D
and 3D FE equations so that their integration can be real-
ized.

3.3 MPC for pressures

The nodal pressures on the interface of Ωns can be deter-
mined according to the flow velocity, though the total water
heights at the nodes on the interface belonging to Ωsw have
to be consistent with the pressure values at the nodes on
the interface belonging to the bottom line of Ωns. Therefore,
when the 2D and 3D meshes are conforming as illustrated
in Fig. 5, the following constraint condition is introduced:

pcb = ρghc (32)

Fig. 5 MPC condition for pressure or water level

where hc is the nodal value of the total water height
in Ωsw and pcb is the nodal value of the pressure in
Ωns.

When the node arrangements are not conforming, we
impose exactly the same constraint condition as inEq. (31) on
the total water heights at the nodes on the interface belonging
to Ωsw and the pressure values at the nodes on the inter-
face belonging to the bottom line of Ωns. Here, the water
height hc of the 2D domain at the interface is obtained from
the bottom pressure pcb calculated in the 3D domain. The
water height of the 2D domain is obtained from Eq. (31) so
that the wave propagates from the 3D to 2D domains prop-
erly.

3.4 Transmission method for z-component flow
(vertical) velocity

In the shallow water approximation, the flow velocity is
assumed to be uniformly distributed in the vertical direction
and the velocity component in the z-direction, wsw, is not
defined. Therefore, the velocity component in the z-direction,
wc
ns, on the interface belonging to Ωns cannot be predeter-

mined.
In order to tackle this problem, we evaluate the veloc-

ity component in the z-direction, wsw, on the boundary of
Ωsw located next toΩns, based on the following free-surface
kinematic condition obtained with the equation:

wsw = ∂

∂t
(h + zb) + usw

∂

∂x
(h + zb) + vsw

∂

∂y
(h + zb)

(33)

Setting the FE approximations of the flow velocity compo-
nents in the x, y, z-directions and the water depth in this
equation to be uhsw, vhsw, wh

sw and hh , respectively, we obtain
the corresponding FE discretized equation as
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∫

ΩL
sw

ψhwh
swdΩ =

∫

ΩL
sw

ψh
(

∂

∂t
(hh + zhb)

)
dΩ

+
∫

ΩL
sw

ψh
(
uhsw

∂

∂x
(hh + zhb) + vhsw

∂

∂y
(hh + zhb)

)
dΩ

(34)

where ψh is the FE approximation of the weighting func-
tion ψ . ΩL

sw is the domain of elements on the interface
belonging to Ωsw This FE equation is solved at the same
time step and its solutions, namely the nodal velocities
wh
sw, are used as the data for the FE Equation (10) as the

Dirichlet condition on the boundary of Ωns located next
to Ωsw such that wc

ns

∣∣
Ωns

= wc
sw

∣∣
Ωsw

. Since spatially-
constant velocity is assumed on the 3D domain side of
the interface, which is equalized to that of the 2D domain
side of the interface, the effects of the vertical veloc-
ity cannot be considered. Then, the FE equations (10)
and (16) are solved at the same time step with both
this Dirichlet boundary condition and the MPC condi-
tions described in the previous subsection. The solutions
set of FE equations, namely the nodal velocities and total
water height, uhsw, vhsw and hh , are used as the data in the
right-hand side of Eq. (34) to be solved at the next time
step.

Figure 6 shows a relationship between variables of shal-
low water equation and those of Navier–Stokes equation.
The values of the interface has been a value of the mas-
ter node for MPC condition. When the flow passes though
the interface from 3D domain to 2D domain, the veloci-
ties in both the air part and the water part are confined
by the velocity calculated from 2D shallow water equation.
Although this condition doesn’t correspond to reality per-
fectly, we employ the condition for the purpose of simple
calculation algorithm. This transmission method is be essen-
tial to simultaneously solve the shallow-water equation and
the Navier–Stokes equation. In this study, the interface is
always set far away from the region in which we have to
be concerned with the 3D effects so that the assumptions
made for the 2D shallow water equation are valid around
the interface. In this connection, the velocities of the air
and the water on the 3D domain side of the interface are
equal to the shallow water velocity on the 3D domain side
of the interface. This indicates that the velocity distribution
on the 3D domain side of the interface is uniform throughout
the analysis. Strictly speaking, since this condition is phys-
ically incorrect, appropriate boundary conditions should be
applied. However, it is almost impossible to determine the
flow velocity of the air at the interface from the 2D shallow
water solution that does not provide any information about
the flow in the 3D air domain. Therefore, we advocate the
assumption that the effects of this setting are expected to be
small.

Fig. 6 Relationship between SW Eqn. and N–S Eqn

4 Numerical examples

Three simple numerical examples are presented here to
demonstrate the capability of the 2D–3D hybrid stabilized
FEM proposed in this study. One of them is the solitary wave
problem. This demonstrates the simple wave propagation
test over a flat bed using the 2D–3D hybrid model. Second
numerical example is a problem of the wave motion around
a submerged breakwater. The numerical results obtained are
compared with the experimental data so as to verify the
accuracy of the proposed method. The last example is to
demonstrate a tsunami runup analysis in an area with some
structures, as a preliminary examination for the applicabil-
ity of the proposed 2D–3D hybrid method to actual tsunami
problems.

4.1 Solitary wave problem

In order to demonstrate the validity of the presentmethod, we
conducted a numerical analysis of the solitary wave problem.
Figure 7 shows the analysis model that is a water channel 120
m in length, 0.5 m in water depth and 0.05 m in width. The
initial condition of the solitary wave is set at 0.05 m high.
The center region is set as the 3D Navier–Stokes domain and
the other regions are the 2D shallow water domains. Figure 8
shows the FE meshes for the 2D and 3D domains. The slip
condition is imposed on the top, bottom and side surfaces of
the water channel. The time increment was set at be 0.01s.
Figure 9 shows the obtained free surface profiles at different
time steps. It can be seen from the result that the wave passed
though the interface between the 3D and the 2D domains
without any discrepancy.
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Fig. 7 Analysis model for solitary wave problem

Fig. 8 FE mesh of 2D and 3D domain

Fig. 9 Numerical result of free surface profile

4.2 Wave motion around a submerged breakwater

In order to verify the analysis accuracy of the proposed 2D-
3D hybrid stabilized FEM, we conduct a numerical analysis
on the wave motion around a submerged breakwater [18].
Figure 10 shows the analysis target that is a water channel
13 m in length, 0.5 m in water depth and 0.05 m in width.

Fig. 10 Analysis model for wave motion around a submerged break-
water

Table 1 Conditions for incident waves

Height (cm) Period T (s) Node arrangements
at joint region

Case-1 2.5 2.0 Conforming

Case-2 4.5 2.0 Conforming

Case-3 4.0 1.0 Conforming

Case-4 4.5 2.0 Non-conforming

In this tank, a submerged breakwater 1.0 m in length, 0.4
m in height and 0.05 m in width is installed at a position 6
meters from the offshore. Incident waves are applied to the
target from the offshore side. Only the center region around
the submerged breakwater is set as the 3D Navier–Stokes
domain and the other region is the 2D domain where the
shallow water approximation is assumed to be valid.

Four separate conditions of incident waves are taken as
shown in Table 1. Figure 11 shows the FE meshes for the
2D and 3D domains. Figure 12 shows the enlarged birds-eye
view of the FE mesh at the joint region between the 2D and
3D domain for Case-4, in which the node arrangements of
the 2D and 3D domains are not conforming. As shown in
these figures, we prepared an unstructured mesh whose ele-
ments around the submerged breakwater and the free surface
become smaller as they approach its surface. For example, a
minimum element length of 0.005 m is used around the free
surface. The slip condition is imposed on the top, bottom and
side surfaces of thewater channel, while the no-slip condition
is imposed on the periphery of the submerged breakwater.
The time increment used in this simulationwas 0.002s,which
has been determined empirically. It is to be noted that the
time step required in the 3D Navier–Stokes equation must
be smaller than that of the 2D shallow water equation in this
calculation.

The results for Cases 1, 2, 3 and 4 are respectively pro-
vided in Figs. 13, 14, 15 and 16 that provide the time histories
of water level fluctuations measured at the center of the sub-
merged breakwater in comparisonwith the experimental data
and the profiles of the free surfaces. The origins in these
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Fig. 11 FE mesh of 2D and 3D domain

Fig. 12 Enlarged birds-eye view of the FEmesh at the joint region (for
Case-4)

figures are the times when the steady states are realized,
respectively. As can be seen from these figures, the numeri-
cal results are in agreement with the experimental ones. Also,
no disturbance is observed in the profiles of the water sur-
faces around both the submerged breakwater and the joint
domain of the 2D–3D domains, demonstrating the stability
of the proposed numerical method thanks to the performance
of the stabilized FEM.

In order to confirm the capabilities of the MPC and trans-
mission methods introduced in the previous section, let us
focus our eyes on Cases-4, where the node arrangement does

Fig. 13 Numerical result: Case-1

Fig. 14 Numerical result: Case-2

not conform at the 2D–3D joint, and Case-2, in which the
same incident wave is used. The result of Case-4 is com-
pared with that of Case-2 in Fig. 16, in which the two wave
profiles overlap. It can be confirmed from this comparison
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Fig. 15 Numerical result: Case-3

Fig. 16 Numerical result: Case-4 along with the result of Case-2

that the MPC and transmission methods implemented into
the proposed 2D–3D hybrid method function properly.

In order to examine whether or not the 3D effects at the
interfaces between the 2D and 3D domains are negligible in

Fig. 17 Numerical result: Case3 and Case3-w

the above numerical example, we have conducted an addi-
tional numerical simulation, of which 3D analysis domain
is twice as large as the original setting in the X-direction.
The interfaces of this doubled size of the 3D Navier–Stokes
domain with the 2D domains are supposed to have the 3D
effects at less than the original ones. We call this additional
case Case-3-w and employ the same analysis condition as in
Case-3, which achieves the most severe condition in terms
of the Froude number. Figure 17 shows the time histories of
water level fluctuations on the free surface measured directly
above the center of the submerged breakwater in comparison
with those of Case-3 and the experiment. As can be seen from
this figure, the profiles of Case-3-w andCase-3 are almost the
same and in agreement with the experimental result. There-
fore, it seems to be safe to conclude that that the 3D effects
around the interfaces are negligibly small, as the interface is
set far enough away from the region where the 3D effects are
considerable.

The final remark is made about the superiority in terms of
the computational cost. If we generated the 3D mesh of all
the analysis domain with the same fineness as that around the
submerged breakwater, including 2D domain in this analysis,
the number of DOF would become larger. This provisional
calculation demonstrates that the proposed method enables
us to simulate the offshore wave propagation and tsunami
runup on a regional scale at relatively low computational
cost.
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Fig. 18 Analysis model for tsunami runup problem in an area involv-
ing some structures

4.3 Analysis of tsunami runup with structures

As a preliminary examination for the applicability of the
proposed method to actual problems we simulate a tsunami
runup involving some structures in a virtual urban area as
shown in Fig. 18. Here, the offshore region 400 m in length
is set for the 2D shallowwater equation,while the 3DNavier–
Stokes equation is solved in the remaining region with a
submerged breakwater and onshore structures.

A water column with the width of 80 m and the water
level of 10 m is initially located about 300 meters off the
coast and is broken to generate an artificial tsunami wave.
The slip condition is imposed on the top, bottom and side
surfaces and the periphery of the breakwater, while the no-
slip condition is imposed on the peripheries of the submerged
breakwater and buildings. A 3D unstructured mesh is gen-
erated with a minimum element length of about 0.5 m in
the runup area that ranges from the submerged breakwater
to the region involving the buildings. Figure 19 shows the
FE mesh around the onshore structures. The analysis with
no submerged breakwater is also carried out for the sake of
comparison.

Figures 20 and 21 respectively show the runup analysis
results of the cases with and without the submerged break-
water. It can be seen from these results that the wave for
the former case spends more time than that of the latter to
reach the runup area. It is thus safe to conclude that the pro-
posed method can be successfully capture the effect of the
submerged breakwater on the delay in the arrival time of the
tsunami runup.Also, since the unstructuredmeshes conform-

Fig. 19 Mesh around onshore structures

Fig. 20 Numerical result of tsunami runup analysis with submerged
breakwater

Fig. 21 Numerical result of tsunami runup analysiswithout submerged
breakwater
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ing to the surface configurations of the onshore structures
are used, the flow regimes around the them are very sta-
ble. Based on these results, it is confirmed that the proposed
method is effective in simulating offshore wave propagation
and tsunami runup on a regional scale involving 3D charac-
teristics.

5 Conclusions

This study proposes a 2D–3D hybrid stabilized FEM to sim-
ulate the offshore wave propagation and tsunami runup on a
regional scale with high accuracy and at low computational
costs. The 2D shallow water equation is employed for the
offshore wave propagation and the 3D Navier–Stokes equa-
tion is employed for the runup. The VOF method is applied
to capture free-surface flows in the 3D region. To satisfy
the continuity conditions for flow velocities and pressures,
the standard MPCmethod is adopted. Also, the transmission
method is introduced to approximate the vertical component
of the flow velocity on the boundary of the 3DNavier–Stokes
domain located next to the 2D shallowwater domain. Thanks
to theMPC function, the continuity conditions of flow veloc-
ities and pressures at the interface can be satisfied even when
unstructuredmeshes, whichmight not conform to each other,
are independently generated for 2D and 3D domains.

In the numerical examples, we dealt with the problem of
wave propagations around a submerged breakwater to con-
firm the accuracy and stability, and the problem of a tsunami
runup involving submerged and onshore structures to demon-
strate the capability and effectiveness of the proposed 2D–3D
hybrid method.
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