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SUMMARY

The present study proposes a method of micro-macro concurrent topology optimization for a two-phase
nonlinear solid to minimize the end compliance of its macrostructure undergoing large deformation. In order
to reduce the computational costs to solve a two-scale boundary value problem (BVP) under geometrically
nonlinear setting, we employ the so-called method of decoupling multi-scale structural analysis, in which
the micro- and macroscopic BVPs are decoupled in terms of the homogenization process. An isotropic
hyperelasticity model is employed for the constitutive model for microstructures, while an orthotropic one
is assumed to represent the macroscopic material behavior. Owing to this decoupling framework, the micro-
macro concurrent optimization problem can be split into two individual problems at the micro- and macro-
scales for the sake of algorithmic simplicity. Also, a two-scale adjoint sensitivity analysis can be performed
within the framework of computational homogenization. It is verified from a series numerical examples
that the proposed method is capable of computing the optimal structures at both micro- and macro-scales,
according to the level of applied load. Copyright© 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Most structural materials can be regarded as composites from a micro-level perspective, and thereby
their mechanical behavior is known to strongly depend on the micro-level geometric characteristics
of constituent materials, such as layout, shape and dimensions. It is thus the common knowledge
that the macroscopic material properties can be controlled to some degree by effectively arranging
different types of constituents at the micro-scale. In the field of material development, in particular,
much time and energy have been devoted to finding an optimal microstructure that can maximize
the macroscopic mechanical performance or control its response as intended. To reduce such a
uphill task, a numerical strategy, so-called topology optimization, has been drawing intense research
interest because of its overwhelming flexibility in design in the past decades. Topology optimization
already plays a significant role in design divisions of many industries, and nowadays is applied even
for the design/development for advanced materials as reported in [1, 2, 3].

Directing our attention to manufacturing aspects, we notice that use of 3D printers in production
and engineering, often called additive manufacturing, has recently become an increasingly realistic
proposition. Discussions have been taking place on the possibility and potential of a new
manufacturing framework that combines topology optimization-based design tools with additive
manufacturing [4, 5, 6, 7]. Combining their advantages will enable manufacturing that focuses more
on structural performance than on aspects of production. It should not be forgotten, however, that
3D printed products are still relatively unreliable in terms of strength of material, and thus further
research and development is required. Nonetheless, reports have recently been released of free
additive manufacture of metal macrostructures by controlling crystal orientation or crystal grain
size in the micro-scale domain [8, 9, 10, 11]. If such technologies become established, material
reliability will increase, enabling full-scale production with 3D printers. These trends indicate that
the development of optimization methods for not only a macrostructure but also at the same time its
microstructures will enable us to create a totally new product.

In this context, we focus on optimizing the topologies of both the micro- and macrostructures
simultaneously, in order to maximize the mechanical performance of a macrostructure. In fact,
recent years have seen a renewal of interest in the so-called concurrent multi-scale topology
optimization. Rodrigues et al. [12] reported such an achievement in their research on maximization
of stiffness of a linear elastic body. Yan et al. [13] introduced concurrent multi-scale topology
optimization of a single microstructure, the so-called uniformly-structured material, for thermo-
elastic structure. Niu et al. [14] proposed a method for simultaneous optimization of the topologies
of both micro- and macrostructures for maximizing the lowest natural frequencies. Sivapuram et
al. [15] also introduced concurrent multi-scale topology optimization based on a level set method
considering the non-uniform structured material for a two-dimensional linearly elastic body. Some
research groups make use of the Bi-directional Evolutionary Structural Optimization (BESO)
method for the micro-macro concurrent topology optimization, e.g. Xia and Breitkopf [16], [17],
Yan et al. [18].

To realize the above-mentioned multi-scale concurrent topology optimization, we need to solve
a micro-macro coupled boundary value problem (BVP), known as two-scale BVP, which is
composed of micro- and macroscopic BVPs within the framework of mathematical homogenization
theory. The so-called multi-scale analysis to solve the two-scale BVP is often referred to as
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the computational homogenization, and has provoked a great deal of controversy. Particularly
for nonlinear problems, since the macroscopic constitutive equations cannot be provided in
the macroscopic BVP, many studies have been reported so far for nonlinear computational
homogenization, and various numerical techniques have been proposed, taking into account the
material/geometrical nonlinear characteristics [19, 20, 21, 22]. These techniques, known as micro-
macro coupled multi-scale analysis, or simply FE2 methods, commonly require us to solve a
microscopic BVP at each integration point in a finite element of a macrostructure in order to solve
the macroscopic BVP and by necessity demand huge amount of computing time (and hence costs).
Although we would enjoy a certain level of versatility and reliability of the coupled-type multi-
scale analysis, being well supported by theory, the coupled-type multi-scale analysis methods can
rarely be applied to practical designs, when nonlinear structural problems are considered. Inevitably,
therefore, much more unrealistic computational effort is needed for topology optimization with the
micro-macro coupled multi-scale analysis for nonlinear solids.

To the best of the present authors’ knowledge, only few attempts have so far been made at the
studies on the micro-macro concurrent multi-scale topology optimization involving nonlinearities.
Nakshatrala et al. [23] proposed a method of multi-scale topology optimization based on micro-
macro coupled multi-scale analysis for 2D problems using a Neo-Hookean model [24, 25],
where the total material volume is constrained (net mass) without distinguishing between micro-
and macro- material volume. In their study, the multilevel nested Newton method is employed
to reduce the amount of calculation to some extent – which would otherwise be considerably
costly and require further parallel computation with a certain number of processors to make the
calculation time reasonable. Nonetheless, when considering 3D problems and/or problems with
path-dependent constituents at the micro-scale, such as elastic-plastic materials, the multi-scale
topology optimization with the use of the coupled-type multi-scale analysis is of almost no use
especially from the viewpoint of practical design processes. Thus, more effective approaches
to reduce the computational costs are needed for further developments of multi-scale topology
optimization.

In these circumstances, Kato et al. [26] employed the so-called “decoupling multi-scale analysis”
method [27, 28], which substantially reduces calculation costs, to obtain optimized topologies of
microstructures subjected to macroscopic excitations. The method of decoupled-type multi-scale
analysis is an approximate scheme to solve nonlinear two-scale BVP by making the micro- and
macroscopic BVPs decoupled in terms of the homogenization process in analogy with linear
computational homogenization. More specifically, in the decoupling method, the macroscopic
constitutive equation, whose function form is generally not provided in the original two-scale BVP,
is assumed with reference to the constitutive equations employed at the micro-scale. Then, its
material parameters are determined by means of a certain appropriate optimization scheme, so that
the paths of the constitutive equation would fit the results of a series of prescribed microscopic
analyses, called numerical material tests (NMTs). This process to find values of the material
parameters is called parameter identification in this study.

Accordingly, the decoupling method is not only superlatively practical over the afore-mentioned
coupled-type methods, but also highly versatile, once we can ensure the conformity between the
assumed macroscopic constitutive equation and the actual macroscopic material behavior realized
by NMTs. Of course, the reliability also hinges on the accuracy of parameter identification, the
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Figure 1. Micro- and macroscopic domains with their own coordinate systems.

decoupling method is amenable to various nonlinear material models and geometrical nonlinear
problems; see Terada et al. [29] for application to inelastic materials.

In this study, by exploiting the capability of the decoupling multi-scale analysis, we develop a
method of concurrent multi-scale topology optimization for 3D nonlinear solids undergoing large
deformation. The macroscopic end compliance is taken as an objective function to be minimized in
the present optimization problem under the equality constraint condition that both values of micro-
and macroscopic material volume are fixed. For algorithmic simplicity, the micro-macro concurrent
optimization problem is split into two individual problems at the micro- and macro-scales. Also, an
adjoint sensitivity analysis is carried out within the framework of a computational homogenization
so that the present optimization problem can be solved with reasonable computational efforts. It is,
however, noted that we sometimes suffer from the drawback in ensuring the stability of convergence
to an optimum solution, which is caused by the failure of parameter identification for the assumed
macroscopic constitutive equation and/or by the inconsistency of the actual macroscopic material
behavior with the assumed macroscopic constitutive equation. The countermeasure against this
drawback will also be described for gaining numerical robustness.

The so-called density-based topology optimization is utilized in this study, where the
microstructure is assumed to be uniformly-structured composite material consisting of two different
solids: the one is soft and the other stiff hyperelastic materials, and where the macrostructure is
assumed to be a porous material represented by the continuous “0-1” (“void–mixture”) interpolation
scheme. It should be noted, however, that the proposed method does not limit the number of
microstructures, that is, it can be extended to cases allowing a distribution of different optimized
microstructures throughout the optimized macroscopic domain without any special operation. The
performance of the proposed method is verified with some numerical examples. In each of them,
two cases with different levels of applied loading are tested to observe the difference between the
two sets of optimized topologies of micro- and macrostructures; one is small enough to assume
infinitesimally small deformation and the other large enough to induce severely large deformation.
In these numerical examples, the Mooney-Rivlin model is employed as the micro-scale constitutive
equation for an isotropic hyperelastic body, and its orthotropic version proposed by Kaliske [30]
and Kaliske and Schmidt [31] is assumed for the macroscopic constitutive equation.

This article is protected by copyright. All rights reserved.
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2. DECOUPLING MULTI-SCALE ANALYSIS

In this section, we summarize the method of decoupling multi-scale analysis as an approximation
scheme to effectively solve a two-scale BVP. After the two-scale BVP is described within the
framework of finite strain theory, the outline and the step-by-step procedure of the decoupling
analysis are briefly explained.

2.1. Two-scale boundary value problem

The two-scale BVP for a heterogeneous medium or composite material is formally derived through
the formulation in homogenization theory, and is commonly composed of micro- and macroscopic
BVPs, which have their own analysis domains endowed with separate spatial coordinate systems
at micro- and macro-scales; see Figure 1. The micro- and macroscopic domains are respectively
denoted by Y0 and B0 in the initial configurations, and their coordinate systems by Y and X. A
microscopic analysis domain of a periodic representative volume element is often referred to as a
unit cell in computational homogenization and so is hereafter.

The unit cell is assumed to be a rectangular parallelepiped and its boundary surface ∂Y0
[k] is

placed parallel to the microscopic coordinate axis Yk having orthonormal basis vector e[k] as its
normal vector. Then, the position vector Y in the initial configurationY0 of the unit cell is identified
with that in the current configurationY with the microscopic motion y = φ(Y) = Y + w(X,Y). Here,
w(X,Y) is the microscopic displacement field, which depends on both the micro- and macro-scales.
The detailed explanation for w(X,Y) is referred to [28], which the present study follows.

With the macro-scale X being a parameter, the microscopic deformation gradient is defined as

Fm(X,Y) = ∇Yφ((X,Y)) = ∇Yw(X,Y) + 1. (1)

The microscopic equilibrium equation is

∇Y · Pm = 0, (2)

where Pm is the microscopic 1st Piola-Kirchhoff (PK1) stress and is determined by appropriate
constitutive equations for the constituent materials. Note that although hyperelastic materials are
assumed in this study, any type of material models can be employed. Then, the microscopic BVP
for the unit cell consists of Equations (1), (2) and selected constitutive equations along with the
boundary conditions on external surfaces ∂Y[±k]

0 (k = 1, 2, 3) on the unit cell as

w[k] − w[−k] = H̃(X) · (Y[k] − Y[−k]) = H̃(X) · L[k]. (3)

Here, we have defined (•)[±k] := (•)|∂Y[±k]
0

, and L[k] is a vector connecting the corresponding pairs of
nodes, whose position vectors are denoted by Y[±k], in parallel to the Yk-direction, and is referred to
as the side vector. Also, H̃(X) is the macroscopic displacement gradient, which is independent of Y,
and will be described below. The treatment of Equation (3) in the actual computation is explained
in Appendix A.

Meanwhile, denoting the initial and current configurations of the macroscopic analysis domain
by B0 and B, respectively, we define the motion from B0 to B such that x = φ̃(X) ∈ B. Then, the
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macroscopic deformation gradient is defined as FM(X) = H̃(X) + 1, and is known to be equal to the
volume-averaged microscopic deformation gradient as

FM(X) =
1
|Y |

∫
Y0

Fm(X,Y)dY = H̃(X) + 1, (4)

where |Y | represents the volume of the unit cell in the initial configuration Y0. Similarly, the
macroscopic PK1 stress PM is the volume-averaged microscopic stress as

PM(X) =
1
|Y |

∫
Y0

Pm(X,Y)dY, (5)

and is supposed to satisfy the following equilibrium equation for the macrostructure:

∇X · PM = 0. (6)

Here, the body force is neglected for simplicity. Thus, the macroscopic BVP consists of Equations
(4), (5) and (6) along with appropriate essential and natural boundary conditions on ∂uB0 and ∂tB0,
respectively.

It should be noted that the macroscopic BVP is coupled with the solution of the microscopic
BVP associated with X. This implies that the macroscopic stress can be determined without any
specific macroscopic constitutive equation. In other words, homogenization theory generally does
not provide any function form to evaluate the macroscopic stress in nonlinear problems. The solution
method to solve the two-scale BVP directly is called the micro-macro coupled multi-scale analysis,
or simply FE2 method, which commonly requires us to solve a microscopic BVP at each integration
point in a macroscopic finite element model to evaluate the macroscopic stress, and by necessity
demands huge amount of computing costs. However, when the macroscopic constitutive equation
is analogized with the ones employed at the micro-scale, the micro- and macroscopic BVPs can be
decoupled. The next subsection summarizes the decoupling scheme in this direction.

2.2. Outline of decoupling multi-scale analysis

We outline the method of decoupling multi-scale analysis as an approximation scheme to effectively
solve a two-scale BVP defined above. The procedure is presented below in order.

(i) With reference to the constitutive equations employed for the unit cell’s constituents,
we select the macroscopic constitutive equation that properly represents the macroscopic
material behavior of the composite material under consideration. As a matter of policy, the
macroscopic material response is expected to partially inherit the microscopic ones. That
is, if neo-Hookean-type isotropic hyperelastic materials are employed at the micro-scale,
the function form of the macroscopic constitutive equation is supposed to be the same type
except that it may reveal anisotropy. Since this is indeed the case in this study, we select the
anisotropic version of the neo-Hookean model as the macroscopic constitutive equation. The
concrete function forms of the micro- and macroscopic constitutive equations are detailed in
Appendix B.

This article is protected by copyright. All rights reserved.
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(ii) Preparing several patterns of typical macroscopic deformation modes represented by H̃ in
Equation (3), we carry out a series of numerical analyses to solve the microscopic BVP. Then,
the evaluated microscopic stresses are converted to the macroscopic ones with the averaging
relation (5) to obtain the macroscopic stress-strain curves, which can be virtually regarded as
‘empirical’ data. This set of processes, which is nothing but computational homogenization, is
called the numerical material testing (NMT) in this study as mentioned before, and sometimes
virtual testing elsewhere. Some technical issues for NMTs are presented in Appendix A.

(iii) Using the relationships between the macroscopic stresses and strains obtained by NMTs as
measured data, we try to determine the material parameters of the assumed macroscopic
constitutive equation with the help of a certain optimization scheme. It should be noted that the
optimization scheme to be employed here is different from the optimization algorithm used to
update design variables in topology optimization. In this study, the differential evolution (DE)
method [32], known to be a particularly high performing optimization algorithm in terms of
calculation speed and accuracy, is employed. The specific identification methodology with
DE is outlined in Appendix A and more details of DE are found in the reference [32].

(iv) Using the identified macroscopic material parameters, we solve the macroscopic BVP with
appropriate boundary conditions. After the analysis, macroscopic deformation histories at
given material points in the macrostructure are extracted as necessary, and then provided as
data to the microscopic BVPs to evaluate the microscopic responses corresponding to the
macroscopic material responses at the selected points. This process is sometimes referred to
as the localization after the fashion of mathematical homogenization and is effectively utilized
in the micro-macro concurrent topology optimization proposed in this study.

More detailed explanation of the analysis procedure and the concrete process of NMT is referred
to Reference [28].

3. MICRO-MACRO CONCURRENT TOPOLOGY OPTIMIZATION

This section presents the formulation of micro-macro concurrent topology optimization that enjoys
the efficiency of the decoupling multi-scale analysis. After defining the micro- and macroscopic
design variables and introducing the relaxed variations of the respective associated elastic potentials
(or stored strain energy functions), we formulate the multi-scale concurrent optimization problem
and then propose a two-scale adjoint sensitivity analysis.

3.1. Microscopic design variables and relaxation of effective elastic potential

The present study employs the concept of the SIMP method [33] to define the design variables in
microstructure and relaxes the elastic potentials that carry material responses as in the study by [23].
Since the SIMP method was originally devised to deal with a single, porous material, it cannot be
directly applied to our present optimization policy, in which a unit cell is supposed to be composed
of two different materials. Therefore, the two-phase-material optimization method [34], which was
developed along the lines of the SIMP method, is employed so as to be applicable to composites
in this study. This SIMP-like method replaces the set of “void” and “solid” in the original SIMP

This article is protected by copyright. All rights reserved.
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method by two separate solid materials, phase-1 and phase-2, respectively. Thus, when a unit cell is
composed of phases-1 and 2, the microscopic design variable si is defined as the volume fraction of
phase-2 in element i of the unit cell’s finite element (FE) model, which takes values between 0 and
1. In other words, the i-th element is occupied by phase-1 when si = 0, while occupied by phase-2
when si = 1. When 0 < si < 1, the material is regarded as a mixture of the two phases.

Using the design variables defined above, we approximate the “effective” microscopic elastic
potential for element i by the following interpolation on the basis of the rule of mixture:

Ψm = (1 − sηi )Ψ1 + sηiΨ2. (7)

Here, Ψ1 and Ψ2 represent the elastic potentials of isotropic hyperelastic materials, phase-1 and
phase-2, respectively, and η is the power to control the interpolation. In this formulation, phase-2
is assumed to be stiffer than phase-1. Then, the partial differentiation of Ψm with respect to the
microscopic deformation gradient Fm yields the microscopic PK1 stress Pm as

Pm =
∂Ψm

∂Fm
= (1 − sηi )

∂Ψ1

∂Fm
+ sηi
∂Ψ2

∂Fm
= (1 − sηi )P1 + sηi P2. (8)

Here, P1 and P2 indicate the microscopic PK1 stress of phase-1 and phase-2, respectively, which
can be uniquely determined once Fm is given.

3.2. Macroscopic design variables and relaxation of effective elastic potential

In contrast to the unit cell, the macrostructure considered in this study is made from a single
homogenous material so that the SIMP method can be applied. When material density ρI (0 < ρI ≤
1), which is equivalent to the material’s volume fraction of each finite element I, is taken as the
macroscopic design variable, the “effective” maroscopic elastic potential can be of the following
form:

Ψ̄M = ρ
η
IΨM, (9)

where ΨM is the macroscopic elastic potential, which is expected to represent anisotropic
hyperelastic material behavior. By partially differentiating this potential with respect to the
macroscopic deformation gradient FM, we obtain the effective macroscopic PK1 stress as

P̄M =
∂Ψ̄M

∂FM
= ρ

η
I
∂ΨM

∂FM
= ρ

η
I PM, (10)

which is also identified with

P̄M =
ρ
η
I

|Y |

∫
Y0

{
(1 − sηi )P1 + sηi P2

}
dY, (11)

This article is protected by copyright. All rights reserved.
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reflecting the relationships (5) and (8). In analogy with this, Equation (9) can also be rewritten as

Ψ̄M =
ρ
η
I

|Y |

∫
Y0

ΨmdY

=
ρ
η
I

|Y |

∫
Y0

{
(1 − sηi )Ψ1 + sηiΨ2

}
dY. (12)

As can be seen in these equations, the effective macroscopic PK1 stress P̄M and the effective
macroscopic potential Ψ̄M can be expressed so as to depend on both the micro and macro design
variables.

3.3. Two-scale optimization problem

Using the sets of micro- and macroscopic design variables, ρ and s, defined above, we pose
a two-scale optimization problem to minimize the end compliance of a macrostructure (i.e.,
maximization of stiffness in the final loading step). Within the present two-scale framework,
the two-scale objective function can be expressed as f (U, s, ρ), in which U := x − X is the
macroscopic displacement field associated with the motion φ̃(X) ∈ B, and at the same time the
equality constraints are imposed on both the micro- and macroscopic design variables under the
constraint of fixed material volume. In this study, macroscopic constraint hM (ρ) = 0 requires that
the material volume in the macrostructure be fixed at a prescribed value V̂M, whereas microscopic
constraint hm (s) = 0 indicates that the original volume V̂m of phase-2 in a unit cell does not change
for the entire unit cell during optimization. Under these conditions, the following optimization
problem can be posed:

min f (U, s, ρ) =
∫
∂B0

T̂M · UdΓ, (13)

subject to:

RM (U, s, ρ) = Fint (U, s, ρ) − Fext = 0, (14)

hM (ρ) =
∫
B0

ρIdΩ − V̂M = 0, 0 < ρI ≤ 1, I = 1, ..., nρ, (15)

hm (s) =
∫
Y0

sidY − V̂m = 0, 0 ≤ si ≤ 1, i = 1, ..., ns, (16)

where nρ and ns respectively represent the numbers of elements in the FE models of the
macrostructure and the unit cell. Here, RM is the residual force vector of the macroscopic FE
equilibrium equation defined with the nodal internal and external force vectors that are respectively
defined as

Fint =

∫
B0

BT
0 P̄MdΩ, Fext =

∫
∂B0

NTT̂MdΓ, (17)

in which T̂M is the macroscopic traction force vector applied on the external boundary of the
macrostructure. Also, N and B0 are the matrices containing standard shape functions and their
derivatives with respect to the macroscopic material coordinate system X [35], respectively. For the
sake of simplicity, it is assumed that the body force is negligible and that the external vector Fext is
independent of the macroscopic deformation and of all the design variables si and ρI .

This article is protected by copyright. All rights reserved.
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In this study, we separate the two-scale optimization problem described above into two, which
are exclusively associated with macro- and microscopic design variables, as follows:
• Optimization problem 1 (for macrostructure)

min f (U, ρ; ŝ) =
∫
∂B0

T̂M · UdΓ, (18)

subject to:

RM (U, ρ; ŝ) = 0, (19)

hM (ρ) =
∫
B0

ρIdΩ − V̂M = 0, 0 < ρI ≤ 1, I = 1, ..., nρ. (20)

• Optimization problem 2 (for unit cell)

min f (U, s; ρ̂) =
∫
∂B0

T̂M · UdΓ, (21)

subject to:

RM (U, s; ρ̂) = 0, (22)

hm (s) =
∫
Y0

sidY − V̂m = 0, 0 ≤ si ≤ 1, I = 1, ..., ns. (23)

With the fixed design variable •̂, each of these optimization problems is solved separately in the
same optimization step and the both micro- and macroscopic design variables are updated.

At this point, the concern for readers may be whether the important hierarchical and mechanical
relationships between the different scales could be maintained and also whether these relationships
could be reflected to the optimization results by separating the original optimization problem.
However, as can be seen in Equations (18) to (23), the objective function is unique (common for
the two sub-problems and not separated) and only equality constraints are simply separated with
respect to two kinds of design variables, si and ρI , which are independent of each other. With this
problem setting, changes of the microstructure (change of design variable si) will result in changes
in the NMT data, leading to changes in fitted macro-scale constitutive parameters and thus changes
in macro-scale response and eventually changes the objective function values. This implies that the
important hierarchical and mechanical relationships between the different scales can be maintained
and also reflected to the optimization results. To the best of the authors’ knowledge, this solution
method may be somehow related to the so-called dual angular structure described in Lasdon [36],
which is a classical scheme but still in use today as basis of multi-level optimization and multi-
disciplinary optimization.

To solve the two-scale optimization problem posed above, the optimality criteria (OC) method
[37], a gradient-based method, is utilized as an effective optimization algorithm. Since the problem
is separated as explained above, the OC method also has to be applied alternatively to update the
macro and microscopic design variables.

As a reference, Figure 2 presents the overall flow of the proposed concurrent multi-scale topology
optimization. The sensitivity analysis shown in this figure will be described in detail in the next
section.

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
A

rt
ic

leMICRO-MACRO CONCURRENT TOPOLOGY OPTIMIZATION FOR NONLINEAR SOLIDS 11

4. TWO-SCALE SENSITIVITY ANALYSIS

On the basis of the above formulation of the two-scale optimization problem, the two-scale
sensitivity analysis is presented in this subsection. To facilitate efficient derivation of the sensitivity
of the objective function, we employ the discrete adjoint method, in which the macroscopic
equilibrium equation (14) is utilized. Subject to the decoupling multi-scale analyses, some remarks
on the accuracy are also addressed.

4.1. Adjoint sensitivity analysis

The new objective function for the adjoint method is defined as

f ′ = f − λTRM (24)

= FT
extU − λT

Fint (U) − Fext︸            ︷︷            ︸
RM=0

 , (25)

where λ is the adjoint vector. This definition does not cause any mathematical problem as the value
in parentheses is identically zero. Then, the sensitivity of the objective function with respect to the
design variables is readily derived below in view of its dependencies on the micro- and macroscopic
design variables.

First, the differentiation of Equation (25) with the macroscopic design variable ρI yields

∂ f
∂ρI
=
∂ f ′

∂ρI
= FT

ext
dU
dρI
− λT

(
∂RM

∂U
dU
dρI
+
∂RM

∂ρI

)
=

(
FT

ext − λT ∂RM

∂U

)
dU
dρI
− λT ∂RM

∂ρI
. (26)

Since the adjoint vector λ can arbitrarily be chosen, let us set it at λ∗ that satisfies

KT
Tλ
∗ = Fext, (27)

so that the implicit sensitivity term dU/dρI can be eliminated. Here, KT represents the tangent
stiffness matrix when the macroscopic equilibrium condition is satisfied at the final loading step.
Then, in view of Equation (11), the sensitivity with respect to ρI becomes

∂ f
∂ρI
= −λ∗T ∂RM

∂ρI
= −λ∗T

∫
B0

BT
0
∂P̄M

∂ρI
dΩ

= −λ∗T
∫
B0

BT
0

(
ηρ
η−1
I PM

)
dΩ, (28)

which can be evaluated, once we obtain the adjoint vector λ∗ that satisfies Equation (27) and the
macroscopic PK1 stress PM that satisfies the macroscopic equilibrium condition at the final loading
step.
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In a similar fashion, the sensitivity of the objective function with respect to the microscopic design
variable si can be derived as follows

∂ f
∂si
= −λ∗T ∂RM

∂si
= −λ∗T

∫
B0

BT
0
∂P̄M

∂si
dΩ

= −λ∗T
∫
B0

BT
0

(
ρ
η
I
∂PM

∂si

)
dΩ. (29)

Furthermore, in view of the homogenization formula (5) and the interpolated elastic potential (8),
the sensitivity of the mascroscopic PK1 with respect to the design variable can be expressed as

∂PM

∂si
=

1
|Y |

∫
Y0

∂Pm

∂si
dY

=
1
|Y |

∫
Y0

ηsη−1
i

(
∂Ψ2

∂Fm
− ∂Ψ1

∂Fm

)
dY

=
1
|Y |

∫
Y0

ηsη−1
i (P2 − P1) dY, (30)

which can be evaluated, once the microscopic PK1 stresses P1 and P2 are obtained. Thus, the
derivation of the sensitivity in this manner is worthy to be called the two-scale sensitivity analysis.
Note here that the mathematical formulation of the two-scale adjoint sensitivity analysis mentioned
above is carried out along the line of Nakshatrala et al. [23]. The main difference in the present
sensitivity analysis is the procedure to evaluate P1 and P2 caused by the decoupling expression of
micro- and macro BVPs. The influence of this difference is described in detail in section 4.2.

4.2. Summary and remarks

The procedure of this two-scale sensitivity analysis can be summarized as follows: In the
equilibrium state at the final loading step of a macrostructural analysis, (i) apply the macroscopic
displacement gradient H̃(X) (= FM(X) − 1) at each integration point of the macroscopic FE model
to the unit cell as a datum in Equation (3) and solve the microscopic BVP; (ii) evaluate the
microscopic PK1 stresses P1 and P2 at each integration point of the microscopic FE model, and
(iii) use these values in Equation (30) to obtain the sensitivity ∂PM/∂si in Equation (29).

As can be recognized in the procedure described here, to eventually obtain the sensitivity of the
objective function in Equation (29), the two-scale sensitivity analysis needs to be conducted by way
of the computational homogenization at all the integration points of the macroscopic FE model.
This implies that the computational cost increases as the number of elements for the macroscopic
model increases. It should be emphasized, however, that, owing the use of the decoupling multi-
scale analysis scheme, the computational cost of the micro-macro concurrent topology optimization
method proposed in this study is substantially less than those relying on the coupling scheme.

The final remark must be addressed on a defect due to the decoupling scheme. It is to be
noted here that the microscopic equilibrated microscopic PK1 stresses in Equation (30) are the
solutions of the microscopic BVP for the unit cell subjected to the macroscopic deformation gradient
FM(X) = H̃(X) + 1, obtained as a solution of the macroscopic BVP at the final loading step. What
matters here is the fact that the macroscopic PK1 stress PM in the left-hand side of Equation (30) is
not consistent with the macroscopic PK1 stress used to attain the macroscopic equilibrium state in
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(Appendix A)
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(Appendix A)

a3) macro-structural analysis

start

end

・micro-structural analysis 

　for P
1
 and P

2
 in Eq. (30) , 

　where the final F
M  

obtained

　at above a3) is external force

・solve Eq. (29) after Eq. (27) 
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update design variables
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b1)  micro-SA b2) macro-SA

・solve Eq. (28) with the 

    final P
M  

obtained at 

    above a3). 

Figure 2. Flowchart of the proposed multi-scale optimization process.

Table I. Material parameters for Mooney-Rivlin model

C1 C2 D
phase-1 1.923 × 102 0 1.6 × 10−3

phase-2 1.923 × 103 0 1.6 × 10−4

the decoupling multi-scale analyses. In other words, the macroscopic material behavior represented
by the assumed macroscopic constitutive equation may not be able to represent the homogenized
material response evaluated with Equation (5), which is consistent with the two-scale sensitivity
derived above. Therefore, the concurrent multi-scale topology optimization proposed in this study
crucially hinges on the reliability of the selected macroscopic constitutive equation as well as
on the accuracy of parameter identification. This issue will be revisited and discussed when the
performance of the proposed method is demonstrated in the numerical examples.
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(c) Macrostructure 3: plate-like shallow structure  
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Figure 3. Macrostructures with support and loading conditions.

Number of element: 1000

Number of node: 1331

y1

y2

y3

Plane symmetry conditins 

are imposed 

Figure 4. Unit cell’s FE model with plane symmetry conditions.

5. PRELIMINARY VERIFICATION

5.1. Conditions for preliminary verification

This section illustrates simple optimization calculations to verify the performance of the proposed
method before specific numerical examples presented in Section 6.

For the verification, we employ two macroscopic FE models, Macrostructure 1 and 2, as shown
in Figure 3 (a) and (b), respectively. Macrostructure 1 is subjected to two-patterns of simple
deformation modes; one is shear in the x1x2-plane and the other is tension in the x3-direction. The
reason for using such a simple macrostructure is to make the detailed examination and interpretation
of the optimization results easy. Macrostructure 2 is a beam-like structure composed of multiple
elements with both ends being fixed and subjected to transverse loading. In the preliminary

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
A

rt
ic

leMICRO-MACRO CONCURRENT TOPOLOGY OPTIMIZATION FOR NONLINEAR SOLIDS 15

step=0 step=9

step=40 step=18

step=15

y1

y2

y3

0

1

s
i

(b) Tension in x
3
-direction

step=0 step=6

step=40 step=19

step=9

y1

y2

y3

0

1

s
i

(a) Shear in x
1
x

2
-plane

phase-2

phase-1

phase-2

phase-1

Figure 5. Transition of unit cell topology for Macrostructure 1.

verification with these models, the macroscopic topologies are not optimized to focus our attention
only to the microscopic topology optimization, implying that all the macroscopic design variables
are fixed at ρ (= 1.0) during optimization.

Meanwhile, the unit cell’s FE model used for both of the macroscopic models is a cube with
eight-node hexahedral elements as shown in Figure 4, which consists of two materials (phase-1 and
phase-2). The entire unit cell region is used for microscopic analysis, while the one-eighth is used for
optimization to reduce the computational costs as well as to impose plane symmetries with respect to
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Figure 6. Optimization history of objective values for Macrostructure 1.
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Figure 7. Macroscopic stress distributions in Macrostructure 2 (only the left half of the structure is
displayed).

the three coordinate planes. The constraint on the material volume fraction of phase-2 in the unit cell
is set to be 25% for both of the macrostructures and the same value is set as initial values of all the
design variables in the unit cell model except for the element located at the center of the unit cell, to
which a value 0.01 larger than the surrounding elements is assigned. This exception provides a slight
excitation to avoid numerical instability. That is to say, if the same initial value is given to all the
elements in the unit cell and if uniform macroscopic deformation is imposed on it, the microscopic
stress/strain distribution will be the same over the unit cell, implying that the sensitivity ∂ f /∂si does
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Figure 8. Transition of unit cell topology for Macrostructure 2.
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Figure 9. Optimization history of objective values for Macrostructure 2

not make sense to update the design variables. Also, to prevent the optimized topology from staying
in a checkerboard layout, one of the mesh-independent filtering methods [38, 39] is adopted. The
filter radius is set to initially be three times the element length in the unit cell and gradually reduced
as the optimization step advances in order to obtain “0-1” clear separation. Moreover, to make the
results easily understandable, the directions of the microscopic coordinate axes, y1, y2 and y3 are set
to correspond to the microscopic ones, x1, x2 and x3, respectively.
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The microscopic constitutive model assumed for the unit cell is the Mooney-Rivlin model, whose
function form is presented in Appendix B, and the selected material constants are provided in Table
I. The power of the interpolation function (8) is set at η = 3. According to the arguments on the
method of decoupling multi-scale analysis described in Section 2, the Kaliske’s material model
is judged suitable for the macroscopic constitutive equation as it is recognized as an orthotropic
version of the Mooney-Rivlin model. In this study, the method of differential evolution (DE)
[32] is employed as an optimization algorithm to identify the material parameters of the selected
macroscopic constitutive equation with the use of NMT results. The number of agents is 120 and
the iteration number in DE is at most 50 for each case of this verification and also the numerical
examples shown in the next section. Although there might be more efficient number of agents
from viewpoints of accuracy of parameter identification and computational costs, this is not deeply
investigated in this study.

5.2. Verification with Macrostructure 1

This section presents the results of optimization for Macrostructure 1, on which either shear or
tensile deformation is imposed. Figure 5 shows how the topologies of the unit cells are optimized
in response to these macroscopic deformations. Here, phase-2 is yellow-colored. To make the
topological features inside the unit cells visible, only the design variables greater than or equal
to 0.26 are depicted in the figure, as the material volume fraction of phase-2 is constrained to be
25%.

Figure 5(a) shows how the topologies during the optimization, starting from the central part to
which a slight excitation is given, is formed in the diagonal direction to resist the macroscopic shear
deformation. Figure 5(b), on the other hand, shows the transition of the microscopic topology, in
which phase-2 evolves from the central part in the y3-axis in accord with the macrosopic tensile
direction. This evolution in the y3-direction is followed by the material configuration to resist the
shrinkage in the directions perpendicular to the macroscopic tensile direction due to Poisson’s effect;
see step =15 of Figure 5(b). Then the topology obtained at the final topology is reasonable enough
from the mechanical viewpoints.

Figure 6 illustrates the histories of the values of the objective function, which gradually
become smaller and stationary in both cases. The results demonstrate the validity of the unit cell
topologies obtained by the proposed method. However, each of these transitions to the stationary
state is unstable in some degree. This is partially due to the fact that the identification of the
material parameters of the macroscopic constitutive equation occasionally fails. In fact, since
the macroscopic stress is evaluated with the assumed macroscopic constitutive equation in the
decoupling multi-scale analyses conducted during the optimization process, the equality (5) in the
computational homogenization is not necessarily satisfied according the identification accuracy. In
this sense, the reliability and robustness of the employed evolutionary optimization algorithm must
be related to this instability problem. Also, the assumed macroscopic constitutive equation may not
be able to represent the actual material behavior, which is supposed to be evaluated by microscopic
analyses for unit cells in the micro-macro coupling scheme. This might be perceived as weakness
of the present method based on the decoupling approach.
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5.3. Verification with Macrostructure 2

As an extension, this subsection presents optimization of Macrostructure 2 shown in Figure 3, which
is a beam-like structure composed of multiple elements with both ends being fixed. Considering the
symmetry of the design domain, the left half of the macroscopic FE model is used for macroscopic
analysis.

Figure 7 shows the distributions of some macrostructural stress measures at the final loading step.
Here, the macroscopic Cauchy stress Σ is calculated from the macroscopic PK1 stress PM (or P̄M)
as

Σ =
1

JM
PMFT

M, (31)

where JM = det FM is the Jacobian of the macroscopic deformation gradient. It can be seen from
the figure that the normal stress Σ11 is dominant and the shear stress Σ12 is broadly distributed. Note
that the stress within the unit cell could be much greater than the macro-stress Σ since Σ is averaged
over the unit cell. This is a common recognition in homogenization theory.

Figure 8 shows the unit cell’s topologies obtained in some optimization steps. It can be seen
from this figure that, reflecting the macroscopic stress distributions shown above, phase-2 is first
formed to reinforce the macrostructure in the y1-direction and then the reinforcement against the
shear stress in the y1y2-plane is obtained. The corresponding history of the objective function value
is drawn in Figure 9, which exhibits a deceasing trend, implying that a substantial reduction of
the amount of macroscopic deformation can be expected. Thus, it has been demonstrated that an
effective microscopic topology can be obtained by the proposed optimization method.

However, as can be seen from Figure 9, the objective function values at the 17th and 21st
optimization steps became oddly large. Again, this is probably due to the inappropriate identification
of the material parameters of the macroscopic constitutive equation, as discussed above. That is,
this kind of instability possibly occurs, when the identification cannot be assured. In the present
study, when – based on the obtained values of the objective function – it is judged that apparently
inappropriate parameters have been identified, we return to the previous optimization step and
conduct parameter identification again before moving on to the subsequent optimization steps.

In summary, it is confirmed that the present method of topology optimization for unit cells is a
practical approach mostly capable of reaching the optimal solution, though the plausibility partially
depends on the accuracy of parameter identification. Needless to say, however, to find the reliable
and appropriate macroscopic constitutive equation is of paramount importance.

6. NUMERICAL EXAMPLES

This section presents specific optimization calculations to conduct the verification and demonstrate
the capability of the concurrent multi-scale topology optimization proposed in this study.

6.1. Calculation conditions

We utilize two macroscopic FE models provided in Figures 3(b) and (c), which are referred to
as Macrostructures 2 and 3, respectively. For both of the macrostructures, the material volume
fraction is set at 20% and the initial value of macroscopic design variable is set as ρI = 0.2 for
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Figure 10. Optimization results for Macrostructure 2 with the microstructure (beam-like structure with both
ends being fixed) subjected to a low-level load.

all the elements. For the materials in the unit cell model, the same set of material properties and the
power η are used as in the previous section. The volume fraction of phase-2 is set to be 25% for
Macrostructure 2 and 30% for Macrostructure 3. These volume fractions are given as initial values
of the design variables to the elements in the macroscopic FE model except for the elements in the
central region of the unit cell.

To carry out nonlinear macroscopic analyses during the optimization process, an incremental
load-controlled scheme is employed. To this end, the macroscopic FE equilibrium equation (14),
which can be re-written as

RM = Fint − γFext = 0, (32)

which is to be solved with the load factor γ being gradually increased. Here, Fext involves the
referential macroscopic traction force T̂0

M as in (17), but is assumed not to have body forces. In this
study, T̂0

M is fixed at 1.0 (N/mm2)
Remember that the present method has been developed for largely deforming solids. Therefore,

the optimized topologies are expected to be different according to the load levels applied at the
boundary, even though the hyperelastic material models, which are path-independent, are used. To
examine this capability, two different load levels, controlled by the load factor γ, are set in the
numerical examples below.
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Figure 11. Optimization results for Macrostructure 2 with the microstructure (beam-like structure with both
ends being fixed) subjected to a high-level load.

Figure 12. Deformation of the optimized Macrostructure 2 with unscaled finite element mesh subjected to a
high-level load.

6.2. Micro-macro concurrent topology optimization with Macrostructure 2

Using Macrostructure 2 under the given boundary conditions, we conduct two optimization
calculations to demonstrate the capability of the proposed method for micro-macro concurrent
topology optimization: one is with γ = 1.0 × 10−6 and the other with γ = 0.1 for relatively low-
and high-level loads, respectively. The optimization results with both of the conditions are shown
in Figures 10 and 11, which can be recognized as optimized topologies. Figure 12 also displays
the deformed geometry of the optimized Macrostructure 2 with unscaled finite element mesh for
the high-level load, from which one can understand the degree of geometrical nonlinearity, and
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Figure 13. Optimization history of Macrostructure 2 (beam-like structure with both ends being fixed)
subjected to a high-level load.

the corresponding history of the objective function provided in Figure 13 exhibits a monotonically
decreasing trend.

Looking at the optimized macroscopic topology in Figure 10, which is obtained with a low-level
load, we can see that it is similar to a standard truss structure that is subjected to bending about
x3-axis. In Figure 11, on the other hand, the obtained macroscopic topology clearly features a thick
diagonal member in the middle portion between the center and the fixed end of the beam. In fact,
the macroscopic membrane force becomes dominant as the external load increases. This results in
the tendency to obtain the topologies of a suspended structure that diminish the elongation in the
longitudinal direction rather than the bending deformation. The same tendency, which is reasonable
from the mechanical viewpoint, is also realized by Buhl et al. [40] and Matsui et al. [41] within the
two-dimensional context.

Keeping in mind that the macrostructure is formed to resist tensile/compressive deformation in
the longitudinal x1-direction and the x1x2-plane shear deformation, we now focus on the optimized
topology of the unit cell (periodic microstructure) shown in Figure 10. It can be seen from the figure,
phase-2 (yellow-colored) in the obtained microscopic topology, which is relatively stiff, is largely
resistant to both longitudinal deformation in the y1-direction and shear deformation on the y1y2-
plane. Also, phase-1 (blue-colored), which is relatively soft, is located only to keep the continuity
in the y3-direction, to which the unit cell needs no resistance. Thus, it may be safe to conclude that
the obtained topology of the unit cell is reasonable enough from the mechanical viewpoint to reflect
the macroscopic structural behavior. Although such a rough consideration is possible, it seems to
be difficult to further clarify the mechanical implications of the obtained microscopic topology in a
strict sense.

When a high-level load is applied, the optimized topology of the unit cell is obtained as shown
in Figure 11. The obtained topology is very similar to that obtained for a low-level load shown in
Figure 10, though there are slight differences especially in the y1y2 front view. This is probably
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Figure 14. Optimization results for Macrostructure 3 with the microstructure (plate-like shallow structure)
subjected to a low-level load (Case-L).

due to the fact that there is little difference in the direction of the dominant macroscopic stress
component, regardless of the increase in the amount of deformation. Even if a much larger load
is applied, the situation cannot drastically change, as a slender structure is commonly expected to
possess the load bearing capacity in the longitudinal stiffness.

However, excessively high loads often provoke another problem inherent to finite deformation
problems. That is, when the macrostructure is severely deformed, the determinants of the
deformation gradients, JM, at some integration points likely become negative, making it impossible
to further advance the macroscopic calculation. The situation is caused by the extremely low
resistance of a low-density material assigned at those points. This is a well-known headache
to topology optimization problems in consideration of finite deformations, for which some
countermeasures have been proposed [42, 43]. The present study, however, has employed none
of them. Even effective countermeasures easily make the main optimization problem unnecessarily
complex, but some of them might be worthy of attention in future studies.
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Figure 15. Optimization results for Macrostructure 3 with the microstructure (plate-like shallow structure)
subjected to a high-level load (Case-H).

Figure 16. Deformation of the optimized Macrostructure 3 (only half structure is displayed with unscaled
finite element mesh) subjected to a high-level load.
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6.3. Micro-macro concurrent topology optimization with Macrostructure 3

A numerical example with the plate-like shallow structure shown in Figure 3(c) is presented here.
As in the previous subection, two different levels of uniformly distributed loads are considered. We
set T̂M = 0.1 (N/mm2) for the case of lower-level loading (Case-L) and T̂M = 2.5 (N/mm2) for the
case of higher-level loading (Case-H), with the aim of realizing different topologies of both the
unit cells and macrostructures. The load factors corresponding to these load levels are γ = 0.1 and
γ = 2.5, respectively.

First, let us look at the macroscopic optimized topologies. Figures 14(a) shows the obtained
macroscopic topology for Case-L. As can be seen, the macroscopic topology is in the shape of a
cross, which is named as cross-figure topology, and its legs are formed in the macroscopic principal
directions that are in accordance with the x1 and x3-directions. At the same time, the cross-sectional
shape of this macroscopic topology reveals a material layout like an arch-shaped truss structure,
which is typically obtained in minimizing the compliance of a simply-supported beam-like design
domain within the small strain framework. Thus, it is probably safe to say that the minimization
of the macroscopic end compliance is equivalent to the maximization problem of the stiffness of a
linearly elastic body within the range of sufficiently small deformation.

On the other hand, large deformation of the macrostructure is expected for Case-H and leads to the
optimized macroscopic topology shown in Figure 15 (a), which is totally different from that of Case-
L; that is, they are upside down. Figure 16 also displays the deformation of the half of the optimized
Macrostructure 3 for Case-H with unscaled finite element mesh. In fact, the macroscopic topology
obtained here exhibits a bowl-like structure whose side surfaces are suspended to resist the in-
plane or membrane force and whose center portion forms a bell-shaped base to support the external
load. It follows from what has been examined here that the minimization of end compliance in the
present method adequately provided optimized macroscopic topologies according to the amount of
deformation.

Here, in order to understand the mechanical implications of the optimization results more in
detail, we compare the above results with those obtained by Kemmler and Ramm [44], who
conducted the topology optimization of a rectangular thin plate structure subjected to similar loading
and support conditions within finite deformation and single-scale frameworks. In their study, the end
compliance is employed as an objective function and an isotropic material interpolation scheme,
SIMP method, is utilized. Their expected optimal topology in the case of small deformation is
a cross-figure one, similar to Figure 14(a), whose principal axes are directed to the short axes
of the rectangular design domain. In contrast, the principal axes of the optimized topology are
directed to the diagonals of the rectangular design domain in the case of large deformation.
Since the end compliance minimization is aimed at increasing the stiffness in the final state of
deformation, their results are reasonable enough from the mechanical viewpoints. In fact, the
diagonals, which have longer spans than the edges of the rectangular domain, are advantageous
to suppress the deflection with the same material volume. However, this remarkable finding
associated with geometrical nonlinearity seems not to be consistent with the above discussions about
our macroscopic optimization results, which were obtained within the two-scale framework. The
important point to note in this context might be that the present multi-scale topology optimization
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(a) View from y1y3–plane of multiply-arranged opti-
mized unit cells

(b) Zoom of (a)

Figure 17. 3D printer outputs of optimized unit cells obtained for Case-H with Macrostructure 2 subjected
to a high-level of loading: the diagonal direction of the microstructure corresponds with that of the

macrostructure

enjoys anisotropy in the macroscopic elastic property when producing the effect of geometrical
nonlinearity.

Next, to deepen the debate on the effect of geometrical nonlinearity, let us focus our eyes on the
optimized microscopic topologies in Figures 14 and 15. They are actually quite different according
to the load levels, though, as a whole, the stiffer material (phase-2) in both of them are formed in
a planar shape in the y1y3-plane to resist the macroscopic in-plane (x1x3) stress, which is indeed
dominant in the macrostructure. More specifically, it can be recognized that the macroscopic elastic
property characterized by the microstructure shown in Figure 14(b) is mostly isotropic in the y1y3

plane, while that in Figure 15(b) reveals orthotropy in the direction inclined at 45 degrees with
respect to the y1 and y3 axes.

To clearly study the three-dimensional material layout of the microscopic optimization result
illustrated in Figure 15, we present in Figure 17 a 3D printer output of the optimized topology
consisting of 3 × 3 × 1 unit cells. In this output, the phase-1 portions (blue-colored) are removed
and only the phase-2 part (yellow-colored) is created to make it clearer. It is evidently recognized
that phase-2 is distributed in the direction diagonal to the y1 and y3 axes of the microstructure.

In view of the above discussions, it must be interesting to compare the micro- and macroscopic
optimized topologies for Case-H again with the result reported in [44], which addresses the topology
optimization of a thin plate with an isotropic material. As mentioned above, each of the main axes
of the optimized “macroscopic” topology in [44] shifts to the diagonal of the rectangular domain
in response to an increase in the amount of deformation. In contrast, the optimized macroscopic
topology seems not to have preferred directions, while the optimized “microscopic” topology
obtained in the present study exhibits orthotropy in its macroscopic elastic property as pointed
out before. This is highly suggestive of the capability of the proposed method of concurrent multi-
scale topology optimization in creating products whose micro-macro structures together fulfill the
preferable functions.

In summary, the concurrent multi-scale topology optimization proposed in this study is a
practically useful and versatile approach, capable of obtaining mechanically reasonable optimal
structures at both micro- and macro-scales, according to the levels of applied loads.
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7. CONCLUSIONS

With the aim of simultaneously optimizing the topologies of micro- and macrostructures of 3D
two-phase nonlinear solids undergoing large deformation, we developed a method of concurrent
multi-scale topology optimization that embeds the decoupling multi-scale analysis scheme
for computational homogenization. While the standard SIMP method was employed for the
macroscopic optimization problem, the microscopic optimization problem adopted the SIMP-like
method, which replaces the set of “void” and “solid” in the original SIMP by two separate solid
materials, to interpolate the effective microscopic stress. The macroscopic end compliance was taken
as an objective function to be minimized and hence the two-scale sensitivity analysis presented in
this study must be conducted only for the final state of equilibrated micro- and macrostructures
under a certain level of loading. Then the addressed two-scale optimization problem was split into
micro- and macroscopic one for algorithmic simplicity. After two preliminary verifications were
conducted, two sets of numerical examples with different levels of applied loading were presented
to demonstrate the capability of the proposed method. In particular, the actual optimization
calculations provided separate topologies of micro- and macrostructures according to the applied
load levels, which are reasonable from the mechanical viewpoints, exemplifying its validity and
high performance.

Since the macroscopic constitutive equation, which is assumed with reference to the constitutive
equations employed at the micro-scale, is used to evaluate the macroscopic stress in the decoupling
scheme, the proposed method enables us to solve the two-scale BVP with reasonable computational
costs. Although a hyperelastic composite is assumed in the formulation of the two-scale topology
optimization, the framework of the proposed method accommodates a broad class of nonlinear
solids such as elastoplastic materials. However, the success to the optimization hinges crucially on
whether or not an appropriate macroscopic constitutive equation is found and its material parameters
are properly identified. Thus, the proposed method is versatile to some extent, though not infallible.

Special attention must be drawn to the two-scale sensitivity with the decoupling scheme.
Although the sensitivity of the macroscopic stress with respect to the design variable is evaluated
with the use of the microscopic equilibrated stresses in the unit cell, the macroscopic stress used
there is not necessarily the same as the one obtained with the assumed macroscopic constitutive
equation in the decoupling scheme. Therefore, there is a possibility that the convergence behavior
of a multi-scale concurrent optimization process may not be stable, as the accuracy of the sensitivity
of the objective function is affected by the degree of conformity between those two macroscopic
stresses with different origins. In this regard, the applicability to any type of nonlinearities may be
questioned, though the framework posed in this study is general. Thus, it remains a challenge for
future research to work with the decoupling multi-scale method along with a variety of inelastic
material models at the micro-scale.

ACKNOWLEDGEMENT

This work was supported by MEXT KAKENHI Grant Numbers 16H04394 and 26630209. This
support is gratefully acknowledged.

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
A

rt
ic

le28 J. KATO ET AL.

Figure 18. Unit cell equipped with external material points

y1

y2

y3

(d)  pattern 4  (e) pattern 5  (f) pattern 6

 (a) pattern 1  (c) pattern 3 (b) pattern 2

Figure 19. Deformation patterns of unit cells: (a) tension in the y1-direction; (b) tension in the y2-direction;
(c) tension in they3-direction; (d) shear in the y1y2-plane; (e) shear in the y3y1-plane; (f) shear in the y2y3-

plane.

A. HOMOGENIZATION WITH NUMERICAL MATERIAL TESTING

This appendix is devoted to complementing the explanations made in Section 2. To describe the
process of computational homogenization, we introduce the external material points for numerical
material testing, and then explain how to determine the material parameters of an assumed
macroscopic constitutive equation.
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A.1. External material points

In order to solve the microscopic BVP effectively, we introduce external material points outside the
unit cell domain, as shown in Figure 18(b), which is just a mass point in the finite element (FE)
context. To understand the role of these points, let us re-write Equation (3), which corresponds to
the periodic boundary conditions, by

w[k] − w[−k] = q[k], (33)

where q[k] = H̃ · L[k]. Since w[±k] are discretized with nodal displacements on a pair of facing or
opposite boundary surfaces ∂Y[±k]

0 in the initial configuration, the left-hand side of Equation (33)
yields pairs of relative (nodal) displacements between those surfaces. Inevitably therefore, each
component of q[k] has a degree of freedom of the relative displacement between two nodes located
on the opposite sides. Thus, Equation (33) is regarded as a set of multiple point constraint (MPC)
conditions after the FE discretization.

If all the components of q[k]
i are given on the external material point associated with a pair of

boundary surfaces ∂Y[±k]
0 , the components of reaction force vector R[k]

i on it correspond to the
surface integral values of the components of microscopic traction force vector t[k]

mi on the boundary
surface ∂Y0

[k]. In short, this reaction force vector can be expressed as:

R[k]
i =

∫
∂Y0

[k]
t[k]
mi ds. (34)

Then, the ki-components of the macroscopic PK1 stress P[k]
Mi can be computed from this reaction

force vector divided by the surface area
∣∣∣∂Y [k]

∣∣∣ of the unit cell boundary surface in the initial
configuration.

It is to be noted that q[k]
i in Equation (33) can be either known or unknown component of relative

displacement vector. That is, if specific value of q[k]
i is prescribed, implying that the macroscopic

displacement gradient H̃ is determined, R[k]
i is unknown. On the other hand, specific value of R[k]

i ,
or equivalently P[k]

Mi, is prescribed, q[k]
i is unknown.

A.2. Numerical material testing and parameter identification

In the decoupling multiscale analysis, a macroscopic material constitutive equation is assumed
beforehand. To proceed to the macroscopic analysis , its material parameters have to be determined
so as to properly represent the actual material behavior characterized by the heterogeneity in a unit
cell. For that purpose, we carry out a series of numerical material tests (NMTs) to obtain ‘empirical’
data of the relationship between the macroscopic stresses and strains.

The data taken from the series of NMTs must contain enough information about the macroscopic
material behavior. Therefore, at least six patterns of macroscopic deformation, shown in Figure 19,
are usually considered to obtain the corresponding macroscopic stress responses along the lines of
the linear homogenization process. For example, the input data, i.e., the macroscopic displacement
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gradient H̃ in Equation (33), corresponding to these patterns, are given in order as follows:

(a) H̃ =


Ĥ11 0 0
0 ∗ 0
0 0 ∗

 , (b) H̃ =


∗ 0 0
0 Ĥ22 0
0 0 ∗

 , (c) H̃ =


∗ 0 0
0 ∗ 0
0 0 Ĥ33

 (35)

(d) H̃ =


0 Ĥ12 0

Ĥ12 0 0
0 0 0

 , (e) H̃ =


0 0 Ĥ13

0 0 0
Ĥ13 0 0

 , (f) H̃ =


0 0 0
0 0 Ĥ23

0 Ĥ23 0

 (36)

Here, Ĥi j represents the specific component of the macroscopic displacement gradient to control
the relative displacement in Equation (33), while * indicates that the corresponding component is
unknown and cannot be controlled. Also, 0 indicates that the relative displacement between the
boundary surfaces ∂Y[±k]

0 is fixed at zero throughout the microscopic analysis.
Once relationships between macroscopic stresses and strains are ‘empirically’ obtained by a

series of NMTs, the material parameters of the assumed macroscopic constitutive equation can
be identified by a certain optimization scheme. As mentioned in Section 2.2, the present study
employs the differential evolution (DE) method [32], which is known as a high-performance
optimization algorithm in terms of calculation speed and accuracy. To conduct DE for parameter
identification, it is necessary to define appropriate vector populations and evaluation function. Each
vector population is a candidate of the solution for the optimization problem prepared within a
feasible domain, which is a vector having all design variables as components. In DE, an optimal
solution is sought by updating the vector populations in accordance with a certain specified rule. On
the other hand, an evaluation function indicates the goodness of fit of each vector population, and
determines both superiority and inferiority among all the vector populations, enabling us to obtain
the best vector population as the optimal solution.

The ‘goodness of fit’ evaluated by an evaluation function is measured by a certain definition of
difference between ‘empirical’ data obtained by NMTs and the material responses obtained by the
assumed macroscopic constitutive equation endowed with the material parameters identified with
DE. In this study, the following evaluation function ϕ is employed to evaluate the difference, i.e.,
the identification accuracy:

ϕ =

6∑
l=1

ϕ[l], (37)

where

ϕ[l] =
1

nstep

√√nstep∑
i=1

(
iS [l]

IJ − iŜ [l]
IJ

)2
. (38)

Here, iŜ [l]
IJ indicates the IJ component of the macroscopic 2nd Piola-Kirchhoff (PK2) stress

computed in the i-th load step in the NMT for deformation pattern l, while iS [l]
IJ is that computed

by the assumed macroscopic constitutive equation. Also, nstep represents the total number of load
steps. In DE, an optimal solution is searched by minimizing this evaluation function, yielding
the macroscopic material parameters that can simulate responses equivalent to those of numerical
material testing as the optimal solution.
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When DE is applied to identify material parameters of assumed macroscopic constitutive equation
in actual decoupling multiscale analyses, the dimension of a vector population is equal to the number
of the parameters to be determined. For example, when the anisotropic hyperelastic constitutive
equation presented in Appendix B, the number of material parameters to be identified is 36 in total
so that the vector population should be a vector of a maximum of 36 components; D in Equation
(41), factors ai to go in Equation (49) and the components of the unit vectors A and B indicating the
fiber directions.

B. ISOTROPIC HYPERELASTIC CONSTITUTIVE LAW AND ITS ANISOTROPIC VERSION

The elastic potential of an isotropic hyperelastic body can be generally decomposed into the volume
and isochoric parts, Wvol and Wiso, as

Ψ = Ψ (C) = Wvol (J) +Wiso

(
C̄
)
, (39)

where C (= FT F) is the right Cauchy-Green tensor with F being the deformation gradient. Here,
J = det F and C̄ = F̄TF̄ represent the Jacobian, and the isochoric component of the right Cauchy-
Green deformation tensor, respectively. Also, F̄ is the isochoric component of the deformation
gradient and is defined as F̄ = J−1/3F. According to the definition of elastic potential, the second
Piola-Kirchhoff stress (PK2 stress) can be obtained as

S = 2
∂W
∂C
= 2
∂Wvol

∂C
+ 2
∂Wiso

∂C
= Svol + Siso. (40)

When the Mooney-Rivlin model, which is one of the simplest hyperelastic constitutive law, is
chosen, the specific function forms of Wvol and Wiso are given by

Wvol (J) =
1
D

(J − 1)2 , (41)

Wiso

(
C̄
)
= C1

(
Ī1 − 3

)
+C2

(
Ī2 − 3

)
= Wiso

(
Ī1, Ī2

)
. (42)

Here, Ī1 and Ī2 represent the first and second invariables of C̄, which are respectively defined as

Ī1 = trC̄, Ī2 =
1
2

(
tr2C̄ − trC̄2

)
, (43)

where C1 and C2 are the material parameters. Then, the volumetric and isocholic parts of the 2nd
Piola-Kirchhoff stress respectively given by

Svol = 2
∂Wvol (J)
∂C

= J
∂Wvol

∂J
C−1, (44)

Siso = 2
∂Wiso

(
Ī1, Ī2

)
∂C

=

(
2
∂Wiso

∂C̄

)
:
∂C̄
∂C

(
J−2/3Q

)
:
(
2
∂Wiso

∂C̄

)
= I−1/3

3 Q : S̄, (45)
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where I3 = detC. Also, Q and S̄ are respectively defined as

Q = I − 1
3

C−1 ⊗ C, (46)

S̄ = 2
∂Wiso

∂C̄
= 2
∂Wiso

∂Ī1

∂Ī1

∂C̄
+ 2
∂Wiso

∂Ī2

∂Ī2

∂C̄
. (47)

Anisotropic versions of the above well-known isotropic hyperelastic model can be constructed
just by adding the orientational dependency of the material behavior. Targeting at continuous-fiber-
reinforced composite materials, Kaliske [30] and Kaliske and Schmidt [31] proposed the following
stored strain energy function involving unit vectors A and B indicating the fiber orientations:

Ψ = Wvol (J) +Wiso

(
C̄, A, B

)
. (48)

Here, Wvol (J) is the same as that in Equation (41), and Wiso

(
C̄, A, B

)
is defined as

Wiso

(
C̄, A, B

)
= Wiso

(
Ī1, Ī2, Ī4, Ī5, Ī6, Ī7, Ī8

)
=

3∑
i=1

ai

(
Ī1 − 3

)i
+

3∑
j=1

b j

(
Ī2 − 3

) j
+

6∑
k=2

ck

(
Ī4 − 1

)k
+

6∑
l=2

dl

(
Ī5 − 1

)l

+

6∑
m=2

em

(
Ī6 − 1

)m
+

6∑
n=2

fn
(
Ī7 − 1

)n
+

6∑
o=2

go

(
Ī8 − (A · B)2

)o
, (49)

along with the invariants of C̄

Ī4 = A · C̄A, Ī5 = A · C̄2 A, Ī6 = B · C̄B, Ī7 = B · C̄2B, Ī8 = (A · B) A · C̄B, (50)

and the material parameters ai, b j, ck, dl, em, fn and go.
In the context of the decoupling multiscale analysis with NMTs, the anisotropic hyperelastic

constitutive equation presented above can be employed for the macroscopic material model, when
constituents in a unit cell are Mooney-Rivlin materials. It is, however, to be noted that the
applicability might be limited, especially when the unit cell cannot be regarded as a representative
volume element for continuous-fiber-reinforced composites.
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