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Abstract The aim of this study is to propose a strategy for
performing nonlinear two-scale analysis for composite mate-
rials with periodic microstructures (unit cells), based on the
assumption that a functional form of the macroscopic con-
stitutive equation is available. In order to solve the two-scale
boundary value problems (BVP) derived within the frame-
work of the homogenization theory, we employ a class of the
micro-macro decoupling scheme, in which a series of numer-
ical material tests (NMTs) is conducted on the unit cell model
to obtain the data used for the identification of the mate-
rial parameters in the assumed constitutive model. For the
NMTs with arbitrary patterns of macro-scale loading, we pro-
pose an extended system of the governing equations for the
micro-scale BVP, which is equipped with the external mater-
ial points or, in the FEM, control nodes. Taking an anisotropic
hyperelastic constitutive model for fiber-reinforced compos-
ites as an example of the assumed macroscopic material
behavior, we introduce a tensor-based method of parameter
identification with the ‘measured’ data in the NMTs. Once
the macro-scale material behavior is successfully fitted with
the identified parameters, the macro-scale analysis can be
performed, and, as may be necessary, the macro-scale defor-
mation history at any point in the macro-structure can be
applied to the unit cell to evaluate the actual micro-scale
response.
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1 Introduction

The mathematical theory of homogenization [1–3] has been
recognized as a rigorous modeling methodology for charac-
terizing the macro-scale mechanical behavior of heteroge-
neous media with periodic microstructures, often called unit
cells. The so-called localization capability in the theory [4],
which provides clear distinction from the classical or theoret-
ical counterparts in engineering science [5], is an appealing
feature to researchers in the area of computational mechan-
ics, since it enables us to compute the actual microscopic
stress and strain in a unit cell with the help of the finite ele-
ment method (FEM). A series of work done by Léné and
his co-workers [6,7] was probably one of the earliest devel-
opments in this context. It is, however, no exaggeration to
say that Guedes and Kikuchi [8] had a head start on the full-
fledged research activities with a view to the applications of
the homogenization and localization capabilities in engineer-
ing practice, and their work was followed by a string of devel-
opments, too numerous to comprehensively list here. But, this
much can be safely said—the main interest has centered on
the characterization of the macro-scale nonlinear mechanical
behavior of composite materials or heterogeneous solids by
solving the micro-scale boundary value problem (BVP).

The micro- and macro-scale governing equations derived
for nonlinear homogenization problems in solid mechanics,
which define the so-called two-scale BVP, are essentially the
same as those in linear problems. However, the major differ-
ence between the linear and nonlinear homogenization prob-
lems is that the former provides us with the functional form
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of the linear macroscopic constitutive model, whose material
parameters are evaluated by a series of numerical material
tests (NMTs), while the latter does not. In the linear problem,
the NMTs ‘measure’ the fundamental material responses at
the macro-scale so that the homogenized material properties
can be identified, and their micro-scale counterparts, called
the characteristic functions, are obtained by solving the cor-
responding micro-scale BVP. The introduction of the char-
acteristic functions enables us to decouple the micro- and
macro-scale variables and, therefore, prevents us from solv-
ing as many micro-scale problems at the macroscopic mate-
rial points in response to the macro-scale strains there; see
e.g., [2,8] for a lucid explanation.

On the other hand, nonlinear homogenization neither pro-
vides an explicit form of the macroscopic constitutive equa-
tion, nor allows us to separate the micro- and macro-scale
variables. As a result, the micro-scale BVP must be solved
with the macroscopic strain field as datum to evaluate the
corresponding macroscopic stress at a material point of the
macro-structure. Due to this inconvenience, many previous
studies have been entirely focused on the characterization of
the local material behavior by solving a single micro-scale
problem under certain assumed patterns of the macroscopic
loading; see for example, References [9–12] for applica-
tions of elastic-plastic behavior and [13–15] for micro-scale
damage-induced inelastic behavior of heterogeneous solids.
The main purpose of these studies is to illustrate the macro-
scopic material characteristics by solving the micro-scale
BVP for their own unit cells, but the solution of the macro-
scale BVP has received little attention.

To obtain the solution of the macro-scale BVP within
the framework of the nonlinear homogenization, Terada
and Kikuchi [16] demonstrated the two-scale (or global-
local) computations for elastic-plastic deformations of fiber-
reinforces composites, in which the micro- and macro-scale
BVPs are completely coupled. More specifically, a unit cell’s
FE model is assigned to each integration point in the macro-
scale FE model, and the solutions of the macro-scale BVP,
such as the macroscopic stress and strain, are the volume
average of the corresponding solution of the micro-scale
BVP. Independently, or inspired by this attempt, several stud-
ies have been done on the development of a micro–macro
coupling scheme for two-scale analyses; see, e.g. [17–21].
This scheme appears to be robust: it is applicable to vari-
ous types of macroscopic nonlinear material behavior even
in cases where their macroscopic constitutive equations are
unknown. In fact, this approach seems to be the only way
to evaluate the nonlinear macroscopic material response of
a heterogeneous medium when the analytical expression of
its macroscopic constitutive relation is hard to formulate; see
e.g., References [22,23].

However, as readily understood from the nature of the
micro-macro coupling scheme, in which a nonlinear micro-

scale FE analysis must be conducted for a unit cell to obtain
the macroscopic stress at a single integration point, the com-
putational costs required in executing the fully two-scale (or
global-local) computations are very large indeed [16,21].
Thus, the application of the coupling scheme to practical
problems is not feasible without some sort of countermea-
sure. In fact, there have been some attempts to improve the
computational efficiency of the coupling algorithm; see for
example, Yamada [24] who introduced the block Newton–
Raphson method to solve the two-scale BVP. A more direct
approach to reduce the computational cost would be to uti-
lize a distributed memory parallel computer [29], with each
processor taking charge of the micro-scale computation. It
seems, however, to be difficult to implement these methods
for the coupling scheme into existing general-purpose FEM
software, since micro- and macro-scale FE models involve a
single two-scale computation.

Other approaches based on the model reduction tech-
niques are worth mentioning, which enable us to reduce
macroscopic internal variables for inelastic homogenization
procedures; see e.g., [25,26]. In this context, Oskay and
Fish [28] proposed an approximate method to reduce the
model size for the micro-scale problems with the help of the
transformation field analysis. The methods are followed by
Yvonnet and He [27] with the help of the proper orthogonal
decomposition, which are utilized to construct the macro-
scopic constitutive database as mentioned below.

For this reason, we expect from a viewpoint of practi-
cal use that the alternative approach to resolve the problems
mentioned above is developed. With our eyes set on the phi-
losophy of computer-aided engineering (CAE) in this con-
text, the utility value of the two-scale analysis method based
on homogenization can be enhanced in practice by the
micro–macro decoupling scheme. In this context, Terada and
Kikuchi [16], who considered the practical applications while
developing their coupling scheme, proposed the idea of a
constitutive database to decouple the micro- and macro-scale
BVPs. In their approach, the data of the discrete macroscopic
stress responses are obtained beforehand in the macroscopic
strain space by conducting a series of NMTs, and are stored
into a database file, which the evaluations of the actual macro-
scale stress in the macro-scale analysis use to make inter-
polations within the strain spaces. This approach has been
followed by some authors to deal with nonlinear elastic defor-
mations [30,31], but seems not to be feasible in the case of
general inelastic deformations. Thus, more reliable and effi-
cient means must be developed to put the homogenization-
based method for two-scale analyses to practical use.

In this paper, we propose a strategy of conducting nonlin-
ear two-scale analyses of composite materials with periodic
microstructures (unit cells) by applying a class of the micro-
macro decoupling scheme [32] to solve the two-scale BVP,
which can be derived within the framework of the homoge-
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nization theory. The suggested scheme strongly relies on the
method of numerical material testing, which corresponds to
the homogenization process for the unit cells, just like the
computational homogenization method for linear problems.
To be more specific, assuming the concrete functional form
of the macro-scopic constitutive model, we conduct a series
of NMTs on the numerical specimen, i.e., the unit cell’s FE
model, to obtain the nonlinear macro-scale material behavior.
By means of the ‘measured’ data in the NMTs, the mater-
ial parameters in the assumed constitutive model are identi-
fied with an appropriate method of parameter identification.
Once the macro-scale material behavior is successfully fit-
ted with the identified parameters, the macro-scale analysis
can be performed, and, as may be necessary, the macro-scale
deformation history at any point in the macro-structure can
be applied to the unit cell to evaluate the actual micro-scale
response. In this paper, an anisotropic hyperelastic constitu-
tive model for fiber-reinforced composites is taken as a sim-
ple and lucid example to demonstrate the proposed method.
A similar, but essentially different study has been reported by
Ren et al. [33], which proposed a continuum damage model
that accounts for the micro-crack evolutions with the help
of numerical material testing concept. Although the inelas-
tic and brittle damage behavior due to micro-cracking can
successfully be represented by the proposed model, neither
the micro–macro consistency within the framework of math-
ematical homogenization has been examined by comparing
the macroscopic constitutive responses with those obtained
by the microscopic analyses, nor the extended system for the
microscopic problem is utilized with an intention to imple-
ment the model into the general-purpose software.

An outline of this paper is as follows. In Sect. 2, we start
out by providing the two-scale BVP for general finite defor-
mation problems and then introduce a decoupling scheme to
solve the micro- and macro-scale BVPs. Section 3 is devoted
to detailed explanations of the numerical material testing sug-
gested as a process in our scheme. Here, the extended system
for the micro-scale BVP with the periodic boundary condi-
tion is formulated by introducing external material points,
whose counterparts in the FEM are referred to as the control
nodes in this study, so that any pattern of macroscopic stress
and deformation can be applied to the unit cell models. It is to
be noted that, thanks to the introduction of the control nodes
located outside the unit cell model, the corresponding micro-
scale analyses can be conducted by general-purpose FEM
software available in the market. In Sect. 4, employing an
anisotropic hyperelastic constitutive model to represent the
macroscopic material behavior of fiber-reinforced compos-
ites, a tensor-based method of parameter identification for the
model is provided. In Sect. 5, we illustrate the train of numer-
ical analyses involved in the proposed strategy of two-scale
analyses for fiber-reinforced composites. The numerical
examples demonstrate that the proposed approach is expected

to be eligible for both the micro- and macro-scale CAE sys-
tems, since the micro- and macro-scale numerical analyses
are completely decoupled, yet are related to each other with
regard to the adequacy of the assumed constitutive model.

2 Two-scale analysis based on homogenization theory

In the multiscale mathematical modeling for composite mate-
rials with periodic microstructures (unit cells) by means of
the homogenization theory [1–3], micro- and macroscopic
boundary-value problems (BVP) are separately derived, and
the resulting set of BVPs is referred to as a two-scale BVP
[21,34]. In this section, after presenting the individual sets
of micro- and macroscopic governing equations that define
the two-scale BVP, we describe the micro-macro decoupling
scheme to perform the corresponding two-scale analysis.

2.1 Two-scale boundary-value problem

With reference to Fig. 1, we provide the two-scale BVP for
a composite material with unit cells. The formulation here
is made consistently within the framework of finite strain
theory [34].

To measure the microscopic mechanical behavior of a unit
cell, the spatial position Y in the micro-scale initial or refer-
ence configuration Y0 of the unit cell domain and the spatial
position y in the micro-scale current configuration Y are
introduced. They are inter-related by the micro-scale motion
as y = ϕ(Y) = Y + w(Y), where w is the micro-scale dis-
placement of the unit cell. Then the micro-scale deformation
gradient is defined as

F = ∇Y ϕ(X; Y) = ∇Y w(X; Y) + 1

= H̃(X) + ∇Y u∗(X; Y) + 1, (1)

where X denotes the macroscopic material point in the
macro-scale reference configuration, but is not an indepen-
dent variable in the micro-scale kinematics. Here, ∇Y is the
gradient operator with respect to the micro-scale Y , H̃ is
the macroscopic displacement gradient that is independent
of Y , 1 is the second-order identity tensor, and u∗ is the Y-
periodic displacement field that represents a fluctuation due
to micro-scale heterogeneity. The fluctuation displacement
u∗ in (1) is assumed to be subjected to the periodic boundary
condition on the unit cell’s external boundary ∂Y0 as follows:

u∗∣∣
∂Y [J ]

0
= u∗∣∣

∂Y [−J ]
0

(J = 1, 2, 3), (2)

where ∂Y [±J ]
0 indicates a pair of opposite external bound-

aries of the unit cell [4]. This condition is referred to as the
Y-periodicity in the theory. It is assumed that a unit cell is
a rectangular parallelepiped-shape, and its external bound-
aries are arranged parallel to the three micro-scale coordi-
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Fig. 1 Concept of numerical material testing based on homogenization method (in 2D).

nate planes YJ so that the basis vector E[J ] is an outward
unit normal vector on ∂Y [J ]

0 in the initial configuration.
The micro-scale self-equilibrium equation for the unit cell

is given as

∇Y · P = 0 in Y0, (3)

where P is the micro-scale 1st-Piola–Kirchhoff (PK) or nom-
inal stress. The micro-scale governing equation is completed
by the introduction of a relevant constitutive model as a func-
tion of the micro-scale deformation gradient F defined by
(1), and possibly other micro-scale internal state variables in
the case of inelastic materials. Although arbitrary constitu-
tive models are acceptable for the micro-scale stress response
in this framework, we take a class of hyperelastic models in
this study so that the corresponding macroscopic constitutive
model could be an anisotropic hyperelastic one.

Owing to the Y-periodicity, the Piola traction vector
T (N) = P · N , with N being the outward unit normal vector
on the corresponding surface, satisfies the following anti-
periodicity conditions on the unit cell boundary ∂Y0 in the
initial configuration:

T [J ] + T [−J ] = 0, (4)

where we have defined T [±J ] := T (±E[J ]) with E[J ] being
the basis vector of the YJ -axis.

On the other hand, denoting the macro-scale reference
and current configurations by B0 and B, respectively, and
the macro-scale initial position by X ∈ B0, we have its cur-
rent position by the macro-scale motion x = ϕ̃(X) ∈ B,
and we can define the macro-scale deformation gradient as

F̃ = ∇X ϕ̃ with ∇X being the gradient operator with respect
to the macro-scale X . At the same time, F̃ is defined as the
volume average of the corresponding micro-scale deforma-
tion gradient over the unit cell as

F̃ = 1

|Y0|
∫

Y0

FdY = H̃ + 1, (5)

where |Y0| is the initial volume of the unit cell. Here, this
relationship is derivable from (1) along with the Y-periodicity
of the fluctuation displacement u∗, and the macro-scale dis-
placement gradient can be identified with H̃ = ∇X ũ(X),
with ũ being the macro-scale displacement field. Similarly,
the macro-scale 1st PK stress can be defined as the volume
average of the corresponding micro-scale stress over the unit
cell as.

P̃ = 1

|Y0|
∫

Y0

PdY, (6)

which satisfies the following macro-scale equilibrium equa-
tion:

∇X · P̃ + b̃ = 0 in B0, (7)

where b̃ is the body force. It is well known that the nonlinear
homogenization theory does not have a logic that accom-
modates the explicit form of the macroscopic constitutive
equation, but it allows us to use (6) to evaluate the macro-
scopic stress P̃ after solving the micro-scale problem for the
equilibrated micro-scale stress P .

In summary, the micro-scale BVP is to be solved for the
set of solutions w, F, P that satisfies the micro-scale equi-
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librium equation (3) along with the kinematic condition (1)
and a relevant constitutive equation, while the macro-scale
BVP is for ũ, F̃, P̃ that satisfies (5), (6) and (7). It is noted
that the micro-scale BVP can be solved only if the macro-
scale solution is given and vice versa. The BVP composed
of the micro- and macro-scale BVPs is called the two-scale
BVP in the mathematical homogenization theory.

2.2 Micro–macro coupling and decoupling schemes for the
two-scale BVP

In the two-scale BVP, the macroscopic constitutive equation
is an implicit function of the solutions of the micro-scale
BVP and, thus, the micro-scale BVP indirectly represents
the macroscopic material response. That is, it is not until the
micro-scale equilibrated stress is determined that the macro-
scopic stress can be calculated in view of (6). Therefore, if
the two-scale coupling analysis is performed by the FEM,
the micro-scale BVP must be associated with an integra-
tion point located in a macro-scale finite element model and
solved for the micro-scale equilibrated stress to evaluate the
macro-scale stress by the averaging relation (6), which must
satisfy the macro-scale BVP at the same time. In particu-
lar, when an implicit and incremental solution method with
a Newton-Raphson type iterative procedure is employed to
solve the two-scale BVP, the micro-scale BVP is to be solved
in every iteration to attain the macro-scale equilibrium state
at every loading step. Needless to say, the micro-scale BVP
is also nonlinear and therefore requires the iterative method.
This type of solution scheme to solve the two-scale BVP
is referred to as the micro-macro (or global-local) coupling
scheme and is typified in [16,21,34].

The micro-macro coupling scheme is promising in the
sense that almost all of the various types of macroscopic
material behavior can be captured without knowing their
explicit functional forms of material models if the unit cell is
eligible for a RVE. However, the nature of the method means
it requires a significant amount of computational cost. In fact,
the model size of the macro-scale BVP raises the number of
micro-scale BVPs to the second power, since each macro-
scale integration point is associated with its own micro-
scale BVP. Although some parallel algorithms can reduce
the cost to some extent [29], we are bound to say that the
coupling scheme is all but useless in most practical applica-
tions. Therefore, the decoupling of micro- and macro-scale
BVPs is indispensable for applying the two-scale approach
based on homogenization to various problems encountered
in practice [32].

The precondition of decoupling is that we are able to pick
up a constitutive model to properly characterize the macro-
scopic material behavior that would be obtained from the
numerical analysis on the micro-scale BVP. It is noted that,
from a practical point of view, approximated constitutive

models allow alternatives, since there might not be a rig-
orous model available depending on the type of composite
materials. Once the functional form of an appropriate macro-
scopic constitutive equation is assumed, several micro-scale
numerical analyses are performed on the unit cell to obtain
its material parameters. The set of micro-scale analyses for
this purpose can be referred to as numerical material test-
ing (NMT), an essential process of the micro-macro decou-
pling scheme [32]. The concrete procedure of the method is
described as follows:

(i) An appropriate constitutive model relevant for the macro-
scopic material behavior under consideration is assumed.

(ii) A series of NMTs is conducted on a unit cell model (FE
mesh), which is regarded as a ‘numerical specimen’, to
obtain the homogenized or macroscopic material behav-
ior. Note that the loading patterns here hinge on the
selected constitutive model.

(iii) Material parameters of the assumed constitutive model
are identified by means of the ‘empirical’ data obtained
from the NMTs and an appropriate curve fitting scheme.

(iv) FE analyses are carried out to solve the macro-scale
BVP using the assumed constitutive model with iden-
tified material parameters.

(v) If necessary, after extracting the time-series of macro-
scopic deformation history from the macroscopic analy-
sis result and applying it as a series of boundary condi-
tions, the localization analyses are performed to evaluate
what has actually been happening inside the unit cell dur-
ing the macroscopic deformation process.

Since the material models used in unit cells are supposed
to be given in the computational homogenization method, the
homogenized or macroscopic material model to be assumed
in Step (i) is expected to partially inherit the micro-scale
material behavior. For example, if the unit cell model of
a fiber-reinforced plastic is assumed to be composed of
isotropic hyperelastic materials, the corresponding macro-
scopic material behavior can be anisotropic hyperelastic.
Likewise, if the constituents are elastic-plastic materials, the
macroscopic constitutive model should be within the scope
of anisotropic plasticity. Even though micro-scale cracking is
taken into account as in [23], the corresponding macroscopic
material behavior may be represented by the anisotropic
damage model approximately. However, assumed macro-
scopic constitutive models do not always properly represent
the macroscopic material behavior properly, the decoupling
scheme is just an approximate scheme. Thus, two-scale ana-
lysts are responsible for the degree of approximation, but
the coupling scheme can be used rather than the decoupling
one, if the highest level of accuracy is desired irrespective of
computational costs.
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3 A method of numerical material testing

Assuming that an appropriate constitutive model is found for
the macroscopic nonlinear material behavior, we are con-
cerned with the accuracy and validity of the NMT as part
of the two-scale analysis. Given the macroscopic stress or
deformation as a datum, the micro-scale BVP has to be
solved for the micro-scale stress. Then, using (5) and (6),
we obtain discrete macroscopic stress–strain curves, which
can be regarded as ’experimental results’. In this section, we
first introduce an extended system of the micro-scale BVP
so that the arbitrary patterns of macroscopic loading are uti-
lizable in the NMTs, and provide the concrete procedure of
the NMT by using the standard FEM.

3.1 Alternative form of the micro-scale BVP

The integration of (1) with respect to Y yields the following
form of the micro-scale displacement w of the unit cell:

w(X; Y) = H̃(X) · Y + u∗(X; Y) + c(X), (8)

where c is a constant vector independent of Y . By substi-
tuting this expression into (2) that impose the Y-peridocity
of the fluctuation displacement field, we have the constraint
condition as

w[J ] − w[−J ] = H̃ · L[J ], (9)

where w[±k] := w|
∂Y [±k]

0
. Here, we have defined the vec-

tor connecting the material points of a Y-periodicity pair as
follows:

L[J ] := Y |
∂Y [J ]

0
− Y |

∂Y [−J ]
0

, (10)

which can be called the side vector of a unit cell.
Owing to the anti-periodicity of the Piola traction vector

(4), the following relatiohship can be derived:

T̃
[J ] = P̃ · E[J ] = 1

|∂Y0|
∫

∂Y0

P · E[J ]dY

= 1

|∂Y [J ]
0 |

∫

∂Y [J ]
0

T [J ]ds, (11)

where |∂Y [J ]
0 | is the area of the unit cell boundary ∂Y [J ]

0 .
Also, denoting the spatial basis vector by e[i], the components
of P̃ in (11) can be expressed as

T̃ [J ]
i = P̃i J = e[i] · ( P̃ · E[J ])= 1

|∂Y [J ]
0 |

∫

∂Y [J ]
0

T [J ]
i ds. (12)

That is, the i J -component of the macro-scale 1st PK stress,
P̃i J , is the area average of the corresponding micro-scale
Piola traction vector, T [J ]

i , at the unit cell boundary ∂Y [J ]
0 .

Therefore, the area average of the anti-periodicity condition

(4) for the micro-scale Piola traction vector is nothing but
the action and reaction law of the macro-scale Piola traction
vector on the macro-scale surface whose outward unit nor-
mal vector coincides with E[J ]. The proof of Eq. (11), or
equivalently (12), is provided in Appendix A.

When the response function of the micro-scale 1st PK
stress F(F) is assumed for a material model used in the unit
cell, the micro-scale BVP is given anew as

∇Y · P = 0
F = ∇Y w + 1
P = F(F)

⎫

⎬

⎭
in Y0, (13)

w[J ] − w[−J ] = H̃ · L[J ]
and

T̃
[J ] = 1

|∂Y [J ]
0 |

∫

∂Y [J ]
0

P · E[J ]ds

⎫

⎪⎪⎬

⎪⎪⎭

on ∂Y [J ]
0 . (14)

The data to be prepared for this BVP are the macro-scale
deformation (e.g. H̃) and/or the macroscopic stress (e.g. P̃)
in addition to the information about the unit cell’s geometry
and the material models for constituents with relevant prop-
erties. It is realized that this BVP is a standard qausi-static
equilibrium problem except that the displacement constraints
and the loading conditions at the boundaries are somewhat
special. As will be seen later, since the 9 components of the
macro-scale displacement gradient H̃ and the 9 components
of the micro-scale 1st PK stress P̃ are dual, they cannot be
given independently.

3.2 Extended system of the micro-scale BVP with external
material points

We here introduce an extended system of the micro-scale BVP
by introducing fictitious material points located outside the
unit cell domain. Although these additional points can be
inside the unit cell, we call them ‘external’ material points in
this study.

The constraint condition (9), or equivalently the first equa-
tion in (14), can be re-written as

w[J ] − w[−J ] = q[J ], (15)

where we have defined the relative displacement vectors as

q[J ] := H̃ · L[J ]. (16)

Corresponding to the three pairs of the unit cell boundary
surfaces ∂Y [±J ]

0 , we introduce three external material points,
to which the degrees-of-freedom (DOFs) of the three relative
displacement vectors q[J ] in (16) are assigned as depicted in
Fig. 2. Thus, the resulting extended system of the governing
equations for a unit cell has nine more DOFs than the origianl
one (13) with (14) in a 3D setting.

Owing to the introduction of the external material points,
Eq. (15) is regarded as a three-point constraint equation that
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(a)

(b) (c)

Fig. 2 External material points for controlling relative displacements and reaction forces on unit cell’ boundary surfaces: a boundary surfaces; b
relative displacements; c reaction forces.

relates the displacement vectors of an arbitrary pair of mater-
ial points on the boundary surface ∂Y [±J ]

0 to the relative dis-
placement vector of the corresponding single external point,
while eqn. (9) is regarded as a two-point constraint condi-
tion with q[J ] as a constant vector. As will seen later, this
feature is not only of particular convenience when evaluat-
ing the macroscopic stress and strain, but also the only way
to impose the macroscopic stress components directly to the
unit cell without solving the macroscopic BVP (7).

For instance, if we solve the micro-scale equilibrium equa-
tion (3) for a unit cell by specifying the i-th component
of the displacement q[J ]

i at an external point, not only the
micro-scale stress and strain fields, but also the i-th compo-
nent of the reaction force R̃[J ]

i at the external point should

be obtained. We then note that this reaction force R̃[J ]
i can

be identified with the area integral of the micro-scale Piola
traction vector T [J ]

i over ∂Y [J ]
0 , which is associated with

the constraint condition (15) for the relative displacement
w

[J ]
i − w

[−J ]
i . That is, we have

R̃[J ]
i =

∫

∂Y [J ]
0

T [J ]
i ds, (17)

from which the corresponding component of the macro-scale
Piola traction vector can be obtained as

P̃i J = T̃ [J ]
i = R̃[J ]

i

|∂Y [J ]
0 | . (18)

Therefore, once all the resultant forces acting on the three
external material points are evaluated, all the components of
the macro-scale stress can be obtained.

On another front, the specification of the components of
a resultant force R̃[J ]

i to an external point is possible, and
implies that the components of the macroscopic stress P̃i J

can be imposed on a unit cell irrespective of the correspond-
ing macro-scale problem. In this case, the component of
the displacement q[J ]

i is unknown, but can be translated to

the component of the macro-scale displacement H̃i K L [J ]
K by

means of (16).
In the mathematical theory of homogenization, a unit cell

domain is identified with a single macroscopic material point.
This means that each macroscopic field variable is deter-
mined from a single unit cell. In this context, the three exter-
nal points have nine DOFs in total, which are the same in
number as the independent components of the macro-scale
1st PK stress or of the macro-scale displacement gradient.
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Therefore, the set of components of the macroscopic stress
P̃ is uniquely associated with the set of components of the
reaction force R̃ at the three external material points. Also,
the displacement gradient H̃ is uniquely related to the rela-
tive displacement q[J ]. Thus, these external material points
enable us to evaluate the macroscopic quantities without
using the corresponding microscopic quantities. This fea-
ture is of particular advantage especially when the numer-
ical material testing is conducted with commercial FEM-
software, as explained below.

3.3 Finite element analysis for a unit cell with external
material points

We here explain the usage of the external material points to
solve the micro-scale BVP with a view to utilizing a general-
purpose FEM code available on the market. For the sake of
simplicity, only a rectangular parallelepipe-shaped unit cell
is considered, and its sides are assumed to be parallel to one
of the micro-scale coordinate planes so that only the J -th
component of the side vector L[J ] is non-zero.

For preparation of the finite element analysis (FEA) for
the micro-scale BVP, the spatial domain of the unit cell is
discretized to generate its FE mesh. At the same time, each
external material point is also ‘discretized’ to an element
with a single node which has three DOFs and no mass. Since
the external material points enables us to control the compo-
nents of the macro-scale stress and deformation, as explained
above, the node corresponding to an external material point is
referred to as a control node in this study. Thus, we obtain an
extended system of FE-discretized equations involving nine
additional DOFs of three control nodes. In the following, we
introduce some specific usages of the three control nodes to
solve the extended system.

First, the macro-scale deformation is assumed to be
known; that is, all the components of the macroscopic dis-
placement gradient H̃ are given as data. Using (16), we obtain
all the components of the nodal displacement vector q[J ] at
the three control nodes located on the unit cell boundary
∂Y [J ]

0 (J = 1, , 2, 3). Then, given all the components q[J ]
i ,

we solve the extended system of FE equations for the micro-
scale BVP (13) with the nine sets of ‘two-point’ constraints
realized by (15). The results of the FEA contain not only the
micro-scale displacement, strain and stress, but also the reac-
tion force R[J ]. Therefore, the macro-scale 1st PK stress P̃
can be computed from (18), without performing a numerical
integration on (6). Also, since the macro-scale displacement
gradient H̃ has been given as a datum, the macro-scale defor-
mation gradient can be computed as F̃ = 1+ H̃ and in turn its
determinant J̃ = detF̃ so that the macro-scale true (Cauchy)

stress is computed as σ̃ = P̃ F̃
T
/ J̃

Secondly, let us suppose that the macro-scale stress is
known; that is, all the components of the macro-scale 1st PK
stress P̃ are given as data. All the components of the resultant
force vector R̃[J ]

i at the three control nodes are determined by
means of (18). In this case, all the components of the nodal
displacement vector q[J ] are unknown in the extended sys-
tem of FE equations for the unit cell. Once the solution of the
system is obtained, we can obtain the following relationship:

Q = H̃ · L, (19)

from which the macro-scale displacement gradient can be
evaluated as H̃ = Q · L−1. Here, we have defined Q as the
matrix composed of three sets of the displacement vectors
q[J ] at the control nodes and L[J ] (J = 1, , 2, 3) as the
matrix composed of the side vectors. To be more presice,
they are respectively defined as

Q =
[

q[1] q[2] q[3]] and L =
[

L[1] L[2] L[3]] . (20)

The computation of the macro-scale deformation gradient
F̃ = 1 + H̃ is straightforward and is followed by the
evaluation of the macro-scale right- and left-Cauchy-Green

(CG) deformation tensors as, respectively, C̃ = F̃
T

F̃ and

b̃ = F̃ F̃
T

. Furthermore, we denote the eigenvalues of the
macro-scale right- and left-stretch tensors Ũ and Ṽ by λ̃α ,
and the corresponding eigenvectors by Nα and nα , respec-
tively. Then, the spectral decomposition of C̃ and b̃ are
respectively given as follows:

C̃ =
3

∑

α=1

λ̃2
α Nα ⊗ Nα, and b̃ =

3
∑

α=1

λ̃2
αnα ⊗ nα, (21)

from which the material and spatial logarithmic strains can
be computed.

If either H̃i J or P̃i J are given as data for the control nodes
in actual computations, the macros-scale quantities are eval-
uated in the same way as outlined above. It is, however, noted
that both the displacement q[J ]

i and the resultant force R̃[J ]
i

cannot be specified to the same component number due to the
nature of the extended system. Also, the localization proce-
dure can be performed in exactly the same manner by using
the time-series data of the macro-scale displacement gra-
dient, which are supposed to be obtained in a macro-scale
analysis.

4 Parameter identification for anisotropic hyperelastic
constitutive law

After the ‘measurements’ with the numerical material testing,
the material parameters in the assumed macroscopic consti-
tutive model can be identified. In this section, taking a class
of anisotropic hyperelastic constitutive models as an exam-
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ple, we introduce a method of parameter identification with
all the tensor components ‘measured’ in the NMTs.

4.1 Strategy for parameter identification

There are some established methods of parameter identifi-
cation for most isotropic hyperelasticity models available in
general-purpose FEM-software. After the selection of a con-
stitutive model that is expected to properly characterize the
mechanical behavior of the rubber-like or polymeric materi-
als under consideration, it is a common practice to perform
uniaxial tension, pure shear and equi-biaxial tension tests on
sheet materials [35,36]. Then, by using the measured data as
input, a linear or nonlinear least square method is applied to
identify the parameters used in the selected model. Although
such multiple patterns of loading are prepared, it is difficult to
correctly measure all the necessary components of the stress
and deformation. For instance, when the membrane specimen
is subjected to the uniaxial or equi-biaxial tensile loading, its
out-of-plane deformation is generally not measured. There-
fore, incompressibility is usually assumed in the established
method of identification so that the deformation in a certain
direction, which has not been measured, can be estimated
from the measured data of deformation in other directions.

However, it cannot be expected that the same strategy can
be applied to anisotropic hyperelastic models. In fact, defor-
mation that is not measured cannot be reasonably estimated
in anisotropic models, as a general rule. Also, since there are
significantly more parameters for anisotropic models than for
many isotropic models, it is necessary for the measured data
to be more reliable and contain more information about the
tensor components of the stress and strain than in the case
of isotropic materials. In this regard, it is fortunate that we
can utilize the ‘empirical’ data obtained from the NMT on a
single numerical specimen, which is actually an FE model of
a unit cell. That is, since the NMT enables us to evaluate all
the components of the stress and strain along the deformation
history of the numerical specimen, a bare minimum of data
can be obtained for parameter identification of anisotropic
hyperelastic constitutive functions. Of course, multiple pat-
terns of loading are to be applied to the numerical specimen
to acquire sufficient data, but the concrete patterns and their
number have not yet been discussed. Thus, the present study
is likely to be the first trials on the determination of the load-
ing patterns in the NMT for parameter identification.

4.2 Loading patterns in NMT

A constitutive model is a functional representation of mater-
ial behavior and essentially provides the relationship between
the stress and strain tensors. That is, a constitutive model is
a tensor-valued tensor function and is regarded as a device
to output all the components of the stress tensor by inputting

all the components of the strain tensor. In this context, we
remember that the NMTs for homogenization in 3D linear
elasticity are conducted on the numerical specimen, namely
the unit cell model, with six-independent patterns of the
macro-scale strain which have six corresponding sets of
macroscopic stiffness, which is equivalent to the macroscopic
stress. That is, twenty-one components of the macroscopic
elastic coefficient matrix can be determined with only six
NMTs. To be more specific, we apply the six-patterns of
macroscopic unit strains 1(1) = {1, 0, 0, 0, 0, 0}T ∼ 1(6) =
{0, 0, 0, 0, 0, 1}T to the unit cell separately, obtain the micro-
scale stress σ and strain ε, which satisfies the micro-scale
BVP, and take their volume average over the unit cell to
evaluate the following anisotropic elasticity matrix DH in
the macroscopic constitutive equation 〈σ 〉 = Σ = DH E =
DH〈ε〉 within the linear elasticity framework:

DH =
[

DH
(1) DH

(2) DH
(3) DH

(4) DH
(5) DH

(6)

]

(22)

where each column vector DH
(i) contains the macroscopic

stress components in response to i-th ‘test case’ with input
data 1(i).

Although the macroscopic stress responses are different
depending on the macroscopic strain levels for nonlinear
problems, the macroscopic stress–strain curves are uniquely
determined in hyperelasticity once the macroscopic defor-
mation patterns are given. It is therefore reasonable that six-
independent patterns of macroscopic deformation are given
to the numerical specimen separately to obtain the six sets of
response curves of six (or nine) components of the macro-
scopic displacement gradient tensor and 1st PK stress tensor.
Using these 6 × 6 stress–strain curves, we are able to for-
mulate the minimization problem to determine the unknown
material parameters of an assumed constitutive function for
anisotropic hyperelasticity, as detailed in the next subsection.

An example of macroscopic deformation and stress pat-
terns in NMTs is provided in Table 1. Here, Ĥ and � are the
specified and unspecified components of the macro-scale dis-

placement gradient H̃
[α]

(α = 1, · · · , 6), respectively, and
0 implies the value of the component is fixed to zero during
the NMT. Thus, the components of the macroscopic 1st PK

stress that corresponds to � in H̃
[α]

are zero. Also, � and ♦
are the components of the macroscopic stress caused by the

specification of Ĥ and zero in H̃
[α]

, respectively. Although
we admit of arbitrariness in selecting loading patterns, the
material parameters are uniquely identified by the method
proposed below.

4.3 Tensor-based method for parameter identification

On the presumption that the six sets of six response curves of
all the components of the macroscopic displacement gradi-
ent tensor and 1st PK stress tensor have been obtained by the
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Table 1 Loading patterns for
numerical material tests Case-1: Tension in the X1-direction Case-2: Tension in the X2-direction

H̃
[1] =

⎡

⎣

Ĥ 0 0
0 � 0
0 0 �

⎤

⎦ , P̃
[1] =

⎡

⎣

� ♦ ♦
♦ 0 ♦
♦ ♦ 0

⎤

⎦ H̃
[2] =

⎡

⎣

� 0 0
0 Ĥ 0
0 0 �

⎤

⎦ , P̃
[2] =

⎡

⎣

0 ♦ ♦
♦ � ♦
♦ ♦ 0

⎤

⎦

Case-3: Tension in the X3-direction Case-4: Shear in the X1 X2, X2 X1-plane

H̃
[3] =

⎡

⎣

� 0 0
0 � 0
0 0 Ĥ

⎤

⎦ , P̃
[3] =

⎡

⎣

0 ♦ ♦
♦ 0 ♦
♦ ♦ �

⎤

⎦ H̃
[4] =

⎡

⎣

0 Ĥ 0
Ĥ 0 0
0 0 0

⎤

⎦ , P̃
[4] =

⎡

⎣

♦ � ♦
� ♦ ♦
♦ ♦ ♦

⎤

⎦

Case-5: Shear in the X2 X3, X3 X2-plane Case-6: Shear in the X3 X1, X1 X3-plane

H̃
[5] =

⎡

⎣

0 0 0
0 0 Ĥ
0 Ĥ 0

⎤

⎦ , P̃
[5] =

⎡

⎣

♦ ♦ ♦
♦ ♦ �
♦ � ♦

⎤

⎦ H̃
[6] =

⎡

⎣

0 0 Ĥ
0 0 0
Ĥ 0 0

⎤

⎦ , P̃
[6] =

⎡

⎣

♦ ♦ �
♦ ♦ ♦
� ♦ ♦

⎤

⎦

six sets of the NMTs, we introduce a method of parameter
identification for anisotropic hyperelastic constitutive mod-
els. Although the method can be applied for arbitrary forms
of anisotropic constitutive models, we confine ourselves to
a certain class among them, in which the functional form is
linear with respect to material parameters. A typical example
of this class of models is presented in Appendix B, and we
employ it in the following sections.

Denoting the material parameters by p[k] and the num-
ber of them by npara, an anisotropic hyperelastic constitutive
model which is linear with respect to p[k] can be written as

S̃( p) =
npara
∑

k

p[k] g[k] (23)

where p = {

p[1], · · · , p[npara]} , S̃ is the macroscopic
2nd Piola–Kirchhoff (PK) stress tensor and g[k] (k =
1, · · · , para) are tensor-valued functions that are nonlinear
functions of the macroscopic deformation gradient or the
alternatives. Then now, the number of deformation patterns
of the NMTs is fixed to ntest = 6, and the number of ‘mea-
sured’ data points obtained by a NMT for loading pattern α

is denoted by n[α]
step. More concretely, we perform micro-scale

analyses ntest = 6 times for a single unit cell of the hypere-
lastic composite material and, for a loading pattern α, store
n[α]

step sets of data, each of which contains the six components
of the macroscopic right Cauchy-Green (CG) deformation

tnsor ˆ̃C[n,α]C and the six components of the macroscopic

2nd PK stress tensor ˆ̃S[n,α] for each selected step n among

the loading steps. Here, ˆ̃C[n,α] and ˆ̃S[n,α] can respectively be

computed by the macroscopic displacement gradient ˆ̃H [n,α]

and the 1st PK stress tensor ˆ̃P [n,α], both of them are either the
input data or the ‘measured’ data in the NMTs as explained
in the previous subsection.

On the other hand, given the data of the macroscopic

displacement gradient ˆ̃H [n,α], the constitutive equation (23)

can be evaluated to compute the corresponding macroscopic
stress. We denote this constitutive response by

S̃[n,α]
I J ( p) =

npara
∑

k

p[k]g[k,n,α]
I J (24)

where g[k,n,α]
I J are supposed to be computed by ˆ̃H [n,α], or

equivalently, ˆ̃C[n,α]. Then, the following scalar-valued func-
tion can be defined to sum up the errors measured by the
norms of the stress tensors:

χ( p) = 1

2

ntest∑

α=1

1

n[α]
step

⎛

⎜
⎜
⎜
⎝

n[α]
step

∑

n=1

∥
∥
∥
∥

S̃
[n,α]

( p) − ˆ̃S
[n,α]∥∥

∥
∥

2

∥
∥
∥
∥

ˆ̃S
[n,α]∥∥

∥
∥

2

⎞

⎟
⎟
⎟
⎠

(25)

or equivalently,

χ( p) = 1

2

ntest∑

α=1

1

n[α]
step

⎛

⎜
⎝

n[α]
step
∑

n=1

(

S̃[n,α]
I J ( p) − ˆ̃S[n,α]

I J

) (

S̃[n,α]
I J ( p) − ˆ̃S[n,α]

I J

)

ˆ̃S[n,α]
K L

ˆ̃S[n,α]
K L

⎞

⎟
⎠ (26)

in which the summation convention is employed for the
indices on the macroscopic 2nd PK stress tensor. It is to be
noted that, in this error function, all the stress components
are used to define the error between the constitutive response
and the stress response in the NMT for the same macroscopic
deformation. Note also that the role of the denominator in the
error function is to normalize the error in each step n by the
norm of the stress tensor obtained at the same step of the
NMT and in turn to mitigate the loss of significant digits in
the numerical treatments of the parameter identification.

Since the assumed constitutive equation (24) is linear with
respect to the material parameters p, the differentiation of the
error function (25) with respect to these parameters yields the
following system of linear equations to be solved for p:

∂χ( p)

∂p[l] = 0 (l = 1, · · · , npara) (27)
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To be more specific, the obtained algebraic equations are as
follows:

ntest∑

α=1

1

n[α]
step

⎧

⎨

⎩

⎡

⎣

npara
∑

k=1

nstep[α]
∑

n=1

⎛

⎝
g[l,n,α]

I J g[k,n,α]
I J

ˆ̃S[n,α]
K L

ˆ̃S[n,α]
K L

⎞

⎠

⎤

⎦ p[k]
⎫

⎬

⎭

=
ntest∑

α=1

1

n[α]
step

⎧

⎪⎨

⎪⎩

n[α]
step

∑

n=1

⎛

⎝
g[l,n,α]

I J
ˆ̃S[n,α]

I J

ˆ̃S[n,α]
K L

ˆ̃S[n,α]
K L

⎞

⎠

⎫

⎪⎬

⎪⎭

(28)

which can be identified with G p = b and solved for p, if the
coefficient matrix G is invertible. In fact, unless the assumed
constitutive equation has some inadequacies, the regularity
of the matrix should be guaranteed since the selected loading
patterns provide mutually independent stress responses.

In summary the entire procedure of the proposed method
is presented in the following box.

I. Select a macroscopic constitutive material model
II. Conduct NMTs on a unit cell model using FE mesh

(i) Give the macroscopic displacement gradient H̃ and
then the relative displacement vector q[J ] of the
external points

q[J ] := H̃ · L[J ]

(ii) Build the extended microscopic BVP Eqs. (13), (14)
by imposing

w[J ] − w[−J ] = q[J ]

(iii) Obtain 1st PK stress P̃i J at each incremental step n
for all loading patterns α from the reaction force
vector directly obtained by solving the extended
micro-scale BVP

ˆ̃Pi J = ˆ̃R[J ]
i /|∂Y [J ]

0 |
III. Identify macroscopic material parameters

(i) Using the NMT data calculate the macro-scale 2nd

PK stress ˆ̃S
[n,α] (

=
(

F̃
[n,α])−1 ˆ̃P [n,α]

)

and the

right-CG deformation tensors ˆ̃C
[n,α]

by making use
of Eq. (43) and store all sets of data over n[α]

step
(ii) Build a function of Eq. (23) with the material para-

meters p
(iii) Identify the macroscopic material parameters p by

solving the obtained algebraic equations G p = b

IV. Macroscopic FE-analysis

(i) Solve the macro-scale BVP using the assumed con-
stitutive model with identified material parameters

5 Numerical examples

Numerical analyses are conducted to demonstrate the fea-
sibility of the two-scale coupling analysis with the micro-
macro decoupling scheme and to assess the validity of the
present method of parameter identification by means of
the NMT. The anisotropic hyperelastic constitutive model
[38,39] given in Appendix B is employed as a macro-scale
material model for the macro-scale BVP, and a general-
purpose FEM software, ANSYS® [37], is used for both
micro- and macro-scale analyses.

5.1 Conditions for NMTs

The unit cell models for the numerical verification are shown
in Figs. 3 and 4, which are referred to as UC-1 and UC-
2, respectively. UC-1 is a periodic microstructure of a uni-
directional fiber-reinforced composite (UD-FRC) with A =
{0, 0, 1}T, and UC-2 is that of a 30◦-crossed fiber-reinforced
composite (30CR-FRC) with A = {1/2, 0,

√
3/2}T and

B = {−1/2, 0,
√

3/2}T. The volume fractions of UC-1 and
UC-2 are 28.3 % and 36.1 %, respectively. Also, ten-node
tetrahedral elements (SOLID 187) in the ANSYS’s element
library is used for their FE meshes. For the matrix material
in both of the unit cells, an isotropic hyperelastic model of
Ogden [36] is assumed, and its material parameters are set
at μ1 = 1.9384, μ2 = 0.014 [MPa], α1 = 1.30, α2 = 5.00

Fig. 3 UC-1: uni-directional fiber-reinforced composite.

Fig. 4 UC-2: 30◦-crossed fiber-reinforced composite.
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and dO = 1.429 × 10−3 in the Ogden’s energy functional

WO =
2

∑

i=1

μi

αi

(

λ̄
αi
1 + λ̄

αi
2 + λ̄

αi
3

) + 1

dO
(J − 1)2 (29)

For the fibers, we take material parameters μ = 700 [MPa]
and dH = 10−3 [MPa] in the following isotropic neo-
Hookean energy functional:

WH = μ

2

(

Ī1 − 1
) + 1

dH
(J − 1)2 (30)

Remark 1 We have been aware that a sufficient number of
digits after the decimal point is essential in recoding “mea-
sured” data in the NMTs. To be more specific, 15 or 16 digits
after the decimal point are necessary to mitigate the effect of
rounding errors, when we use double precision real numbers
for computations. The number of digits seems to be some-
what excessive from the viewpoint of effective digits for engi-
neering judgment, but is required for the present tensor-based
method of parameter identification.

Remark 2 Similarly to Remark 1, the quality of FE meshes
for unit cells is also influential on the accuracy of the NMTs
and in turn that of the parameter identification demonstrated
in Subsect. 5.2. For instance, we need the maximum degree
of conformity in the coordinates of the nodes on the opposed
sides of a unit cell, at which the two-point or three-point con-
straints (15) is imposed. In addition, the maximum degree of
geometrical symmetry of the FE model of a unit cell is desired
to obtain the symmetric motion of a geometrically symmetric
unit cell in response to a macroscopically symmetric loading
as in Table 1. Otherwise, the parameter identification with the
present method suffers from the superfluous reaction forces
at the control nodes.

Remark 3 The reliability of the data ‘measured’ in the NMT
depends on the accuracy of the micro-scale analysis for the
unit cell models. It is, therefore, preferable that the most
fundamental response, such as a stress–strain curve of the
uni-axial tension test, is calibrated so that we can eliminate
any analysis errors due to the deficiencies in both the FE
approximation and the input data for the unit cell models.
That is, some sort of empirical validation is indispensable
if the accuracy of the NMTs is essential. Nonetheless, the
method of parameter identification can be verified on the
assumption that the results of the NMTs are reliable enough.

5.2 NMTs and parameter identification

In Step (ii) as explained in Sect. 2.1, we conduct a series of
NMTs on the two unit cell models separately by applying the
six macroscopic loading patterns described in Subsect. 4.2 by
means of the control points introduced in Subsect. 3.2. The
number of loading steps nstep = 20 is taken for each load-
ing pattern, and the same number of sets of the macro-scale

2nd PK stress and right-CG deformation tensors, S̃
[n,α]

and

C̃
[n,α]

, are obtained in a single NMT with loading pattern α,
as explained in Subsect. 4.3. We denote the components of the
macro-scale 2nd PK stress and right-CG deformation tensors

by ˆ̃C [n,α]
I J and ˆ̃S[n,α]

I J , respectively, to distinguish them from
the values determined by the assumed constitutive equation.

The results of the NMTs are shown in Figs. 5 and 6, in
which only one curve is depicted for each loading pattern,
although all the tensor components were obtained and stored
into a file. The curves characterize the anisotropic material
responses as expected. In this study, we assume the following
functional form of the 2nd PK to fit these curves [38,39]:

S̃ = S̃vol + S̃iso (31)

where

S̃vol = 2

D
J (J − 1) C̃

−1
(32)

S̃iso = I −1/3
3

(

I − 1

3
C̃

−1 ⊗ C̃
)

:
[

γ̄11+γ̄2
¯̃C+γ̄4 (A ⊗ A)

+γ̄5

(

A ⊗ ¯̃C A + ¯̃C A ⊗ A
)

+ γ̄6 (B ⊗ B)

+γ̄7

(

B ⊗ ¯̃C B + ¯̃C B ⊗ B
)

+ γ̄8 (A ⊗ B)
]

(33)

Here, γ̄i (i = 1, · · · , 8) and D are described in Appendix
B. This expression of the stress corresponds to UC-2, whereas
UC-1 should provide the transversely isotoropic behavior
that can be realized by setting B = 0 in (33); see [38].

Now, let us go on to the Step (iii) as described in Sect. 2.1.
That is, we apply the method of parameter identification,
which is proposed in Subsect. 4.3, to identify the mater-
ial parameters of the assumed constitutive equation. To be
more specific, the material parameters to be determined are
ai , bi , ci (i = 1, 2, 3) and di , ei , fi , gi (i = 2, · · · , 6)

in (51) as well as D in (32) or (50), though the parameters
ei , fi , gi are unnecessary for UC-1 as mentioned before.
The value of the error function (25) for each loading pattern
is presented in Table 2. Using the identified parameters in (24)

for the assumed constitutive model and the same ˆ̃C [n,α]
I J used

in the NMTs for the arguments C̃ [n,α]
I J , we provide the func-

tional responses of S̃[n,α]
I J in Figs. 7, 9 and 8, where the results

of the NMTs are also shown for comparison. The macro-
scale stress–strain curves in Figs. 7 and 8 are the responses
to the macro-scale deformation patterns consistent with the
NMTs, while those in Fig. 9 are not realized in the NMTs. In
particular, Fig. 9a shows the macroscopic response of UC-
1 when tensile loading is applied in the Y1-direction with
the Y2-direction stress free and with the Y3-direction fixed,
and Fig. 9b shows the relationships between the macroscopic
axial stress components and the right CG deformation tensor
components of UC-2 when tensile loading is applied in each
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Fig. 5 Numerical material test
results for unit cell of
uni-directional fiber-reinforced
composite: a three normal
normal components; b three
shear components.

(a)

(b)

one of the normal directions with the side lengths in the other
two directions fixed.

It can be seen from Figs. 7a, b for UC-1 that the curves
obtained with the identified parameters show fairly good
agreement with those of the NMTs, although conformity may
not be satisfactory, especially in the case of the shear defor-
mation patterns. These levels of accuracy are also seen in
Table 2. As can be seen from Fig. 9a, some level of accuracy
is observed in response to the loading patterns not contained
in the six patterns in the NMTs for parameter identifcation.
A note is appended with regard having obtained equivalent
results for other kinds of unit cells of UD-FRC of different
volume fractions of fibers.

Similar studies can be made on the results shown in Fig. 8
for UC-2, which compares the constitutive responses with

the identified parameters and the data obtained in NMTs for
the macroscopically orthotropic behavior of the 30CR-FRC.

Although the disagreement in the response ˆ̃C [n,α]
33 ∼ ˆ̃S[n,α]

33 is
by no means small and is confirmable in Table 2, the parame-
ter identification seems to be largely successful. The reason
why the error calculated for the 2nd pattern with H̃22 being
controlled in the NMT is relatively large in Table 2, even
though fairly good agreement is obtained for the response in
S̃22 ∼ C̃22, is that the functional responses of some com-
ponents other than S̃22 ∼ C̃22 to this loading pattern devi-
ate from those of the NMTs. We tried other error functions
besides (25), but failed to obtain better results.

The assumed constitutive model for orthotropic hypere-
lasticity is not capable of accurately reproducing the mate-
rial behavior expected from the prepared unit cell models,
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Fig. 6 Numerical material test
results unit cell of 30◦-crossed
fiber-reinforced composite: a
three normal normal
components; b three shear
components.

(a)

(b)

Table 2 Square errors in parameter identification

Loading patterns in NMT 1 2 3 4 5 6

UC-1 9.187 × 10−6 9.187 × 10−6 9.577 × 10−5 0.01238 0.01033 0.01033
UC-2 0.07770 0.1949 0.05057 0.008249 0.01963 0.001126

though the level of accuracy in the parameter identification
is assured to some extent. It was, however, not until the para-
meter identification was realized by means of the NMTs that
the performance of the constitutive model was examined in
this study. If there were more appropriate constitutive mod-
els available, the present approach for homogenization in the
two-scale analyses could be advocated.

5.3 Parameter identification for non-proportional loading

In this numerical example, non-proportional loading con-
dition is considered in terms of the unit cell model UC-
1 to verify the further quality of the parameter identifica-
tion. We use the material parameters obtained at Subsect.
5.2 and compare the analysis results with the identified
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(a)

(b)

Fig. 7 Fitting results for unit cell of uni-directional fiber-reinforced
composite. Fundamental responses as in NMTs: a three normal normal
components; b three shear components.

material parameters and by the micro-scale analysis. The
assumed non-proportional loading is uniform tension in the
Y1-direction followed by unloading and transverse shear in
the Y12-direction. To be more specific, the following two

macroscopic displacement gradients, expressed as H̃
(1)

and

H̃
(2)

, are given to the three external material points in turn
as constraints,

H̃
(1) =

⎡

⎣

0.15 0 0
0 � 0
0 0 �

⎤

⎦ , H̃
(2) =

⎡

⎣

0 0.15 0
0.15 � 0

0 0 �

⎤

⎦

(34)

where the superscript denotes simply the order of applied
loading condition.

Figure 10 shows the results of the analysis with the iden-
tified material parameters and of the micro-scale analysis
using the UC-1. Here, the relation of the equivalent 2nd PK

(a)

(b)

Fig. 8 Fitting results for unit cell of 30◦-crossed fiber-reinforced com-
posite: a three normal normal components; b three shear components.

stress and the equivalent displacement gradient is displayed
to examine the response with respect to the non-proportional
loading. It is observed that the response shows almost lin-

ear behavior during the deformation by H̃
(1)

, then turns out
to be complex nonlinear behavior during the deformation by

H̃
(2)

. As can be seen, the result with identified material para-
meters shows good agreement with the micro-scale analysis,
although discrepancy is observed between two responses.
In general, this kind of errors tend to be accumulated and
increased as the loading direction is changed frequently.
However, the present errors occur during the deformation

by H̃
(1)

and thereafter still preserve almost constant even

under the complex response by H̃
(2)

. This means that the
parameter identification was successfully implemented and
the identified parameters provide sufficient quality for the
macro-scale analysis within the scope of errors in Table 2.

5.4 Macro-scale and micro-scale analyses

The next step, namely Step (iv), is to conduct the macro-
scopic analysis with the assumed macroscopic constitutive
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(a)

(b)

Fig. 9 Responses to the macro-scale deformation patterns not realized
in NMTs: a macroscopic response of UC-1 when tensile loading is
applied in the Y1-direction with the Y2-direction stress free and with
the Y3-direction fixed; b relationships between the macroscopic axial
stress components and the right CG deformation tensor components of
UC-2 when tensile loading is applied in each one of the normal axial
directions with the side lengths in the other two directions fixed.

model using the material parameters identified above. Below,
a demonstration is made only for the UC-1 of Fig. 3.

We consider the macro-structure as shown in Fig. 11,
which also illustrates the support and loading conditions.
Here, the micro-scale coordinate system O-Y ′

1Y ′
2Y ′

3 is dif-
ferent from that used in the NMTs in Step (ii) in this exam-
ple. More specifically, the fiber direction parallel to the Y3-
axis is rotated by 60◦ in the counterclockwise direction with
respect to the X2 axis that is identical with the Y2 axis, while
the Y2 and Y ′

2-axes are identical. Knowing that the macro-
scale coordinate system in Steps (ii) and (iii) coincides with
the micro-scale one, we have to set the fiber direction at
A = {1/2, 0,

√
3/2}T along with B = 0 for (33).

0.00 0.05 0.10 0.15

2

0

Fig. 10 Comparison of analysis result applying identified material
parameters with result of macro-scale analysis.

After the macro-scale analysis, the localization analysis
in Step (v) can be performed, if necessary, by using the
macroscopic deformation histories obtained in the macro-
scale analysis in Step (iv) at certain points of interest in the
macro-structure. In this example, after selecting the center
points of two representative elements, Points A and B, indi-
cated in Fig. 11, we extract the time-series data of the macro-
scale displacement gradient tensors at these points. Before
applying the values to each unit cell to carry out the cor-
responding micro-scale analysis for localization, the tensor
components of the macro-scale displacement gradients have
to be transformed to the values in the rotated macro-scale
coordinate system O-X ′

1 X ′
2 X ′

3 whose axes conform with the
micro-scale system O-Y ′

1Y ′
2Y ′

3. That is, we need to transform
the time series data of H̃pq at Points A and B by the following
coordinate transformation rule:

H̃ ′
i j =

3
∑

p=1

3
∑

q=1

Tip H̃pq Tjq (35)

where Ti j are the components of the coordinate transforma-
tion matrix defined for this particular example as

[T ] =
⎡

⎣

cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤

⎦ (36)

with θ being set at 60◦. By applying the components H̃ ′
i j at

Points A and B to the control nodes with reference to (15)
and (16), we carry out the micro-scale analyses to evaluate
the actual micro-scale stress and strain in the corresponding
unit cells.

Figure 12 shows the results of both the macro-scale analy-
sis and the localization analyses associated with Points A
and B for the loading step 20/40 and 40/40. As can be seen
from the figure, each micro-scale motion properly reflects
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Fig. 11 Macroscopic problem:
a FE model with boundary
conditions; b fiber alignment.

(b)

(a)

the corresponding macro-scale displacement gradient at the
selected points of interest in the macro-structure. Concretely
speaking, the unit cell located at Point A is dominated by a
rigid-body rotation with shear deformation mainly due to the
inclined fiber, while the unit cell at Point B exhibits stretch-
ing in the X1-direction with a relatively high stress value
but without severe a-rigid-body rotation. The results carry
the implication of the so-called two-scale kinematics intro-
duced in [34], and thus illustrate that the macro-scale mate-
rial behavior is consistent with the micro-scale structural
response in the proposed method of two-scale analysis.

By comparing the macro-scale stresses obtained from the
micro- and macro-scale analyses, we can conduct the verifi-
cation of the results. In fact, the localization analysis for each
selected point enables us to compute the reaction forces at
the control nodes (17) and in turn the macroscopic stress with
(18). It was confirmed that the macroscopic stress computed
this way was almost the same as that obtained by the macro-
scale analysis, though the overlapped two stress–strain curves
are not shown here. Accordingly, it can be concluded that the
proposed method of two-scale analysis with the micro–macro
decoupling scheme is reliable enough to the extent of the ade-
quacy of the assumed macroscopic constitutive model.

6 Concluding remarks

Intending to develop a multiscale CAE system for composite
materials, we have introduced a method of two-scale analysis
by applying the micro-macro decoupling scheme under the
assumption that a functional form of the macroscopic consti-
tutive equation is available. The key ingredient of the method
is the numerical material testing, which corresponds to the
homogenization process realized by carrying out micro-scale

numerical analyses for periodic microstructures (unit cells)
of composite materials. To be more specific, assuming that
the concrete functional form of the macroscopic constitu-
tive model is known, a series of numerical materials tests
(NMTs) is conducted on the numerical specimen, i.e., the unit
cell’s FE model, to obtain the nonlinear macro-scale mate-
rial behavior. This has been successfully conducted thanks
to the introduction of the extended system for the two-scale
BVP, and the corresponding micro-scale analyses have been
realized by a general-purpose FEM code by virtue of the
utilization of the control nodes located outside the unit cell
model. Then, the proposed tensor-based method of parame-
ter identification enables us to determine the material para-
meters in the assumed model by means of the ‘measured’
data in the NMTs. Once the macro-scale material behav-
ior fitted with the identified parameters is satisfactory to us,
the macro-scale analysis can be performed, which must be
conducive in the macro-scale CAE. Moreover, as may be
necessary, we are able to carry out the micro-scale analysis
to evaluate micro-scale mechanical behavior of the unit cell
associated with a macro-scale point, by applying the macro-
scale deformation history at that point to the control nodes.
This final process suggests the possibility of the micro-scale
CAE. Taking an anisotropic hyperelastic constitutive model
of fiber-reinforced composites as an example of the assumed
macroscopic material behavior, we have demonstrated the
potential and promise of the method.

A foreseeable extension of this study would be to develop
a CAE system that enables us to deal with a variety of mate-
rial behavior arising from arbitrary kinds of microstructures.
The bottleneck in development must come in the form of
a reliable macro-scale constitutive equation, which should
be, ideally, represent the actual macro-scale material behav-
ior. Therefore, the development of relevant constitutive mod-
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Fig. 12 Macro- and
microscopic analysis results.
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els and the improvement of existing models should be pro-
moted simultaneously with the development of the system.
The extensive utilization of the NMT technology is expected
to make it possible.

Acknowledgments The authors would like to acknowledge the Non-
linear Homogenization Research Group consisting of Tohoku Univer-
sity, Nitto Boseki Co., Ltd. and Quint Corporation, in particular Dr.
Keizo Ishii and Mr. Makoto Tsukino (Quint Corporation ), Mr. Koji
Yamamoto, Mr. Tomohiro Ishida, Mr. Akio Miyori, Mr. Fukagawa
(Cybernet Systems, Co. Ltd.), and Mr. Naohiro Miyanaga (Nitto Boseki
Co., Ltd.) for their contributions and discussions in developing a lin-
ear and nonlinear mutli-scale analysis code “Multiscale.Sim”, which is
embedded in ANSYS® software.

Relationship between the macro- and micro-scale trac-
tion vectors

In this appendix, we derive relationship (11), which is criti-
cal to the numerical material testing with a general-purpose
FEM software. For the sake of simplicity, a rectangular
parallelepipe-shaped unit cell is considered, with its bound-
ary surfaces assumed to be perpendicular to one of the axes
of the micro-scale coordinate system so that only the J -
th component of the side vector L[J ] is a non-zero value
L J (J = 1, 2, 3). In other words, the J -th basis vector
E[J ] coincides with the outward unit normal vector of the
side vector L[J ] of the unit cell of L1 × L2 × L3. It is also
assumed that the basis vectors E[1], E[2], E[3] are common
to the micro- and macro-scale coordinate systems, O-Y1Y2Y3

and O-X1 X2 X3.
As indicated in Eq. (6), the macroscopic 1st Piola–

Kirchhoff (PK) stress P̃ is the volumetric average of the
corresponding microscopic stress P over the domain of the
initial configuration Y0 of a unit cell. This homogenization
formula for the stress can be transformed to

P̃ = 1

|Y0|
∫

Y0

[∇Y · (P ⊗ Y) − (∇Y · P) ⊗ Y ]dY

= 1

|Y0|
∫

Y0

∇Y · (P ⊗ Y)dY (37)

where we have used the micro-scale self-equilibrium equa-
tion (3) along with ∇Y · (P ⊗ Y) = (∇Y · P) ⊗ Y + P .

The application of the Gauss divergence theorem yields the
following relationship:

P̃ = 1

|Y0|
∫

∂Y0

(P ⊗ Y) · Nds = 1

|Y0|
∫

∂Y0

T (N) ⊗ Yds (38)

where T (N) := P ·N is the microscopic Piola traction vector,
wtth N being an arbitrary outward unit normal vector at the

boundary surface ∂Y0. Note here that, due to the assumption
on the geometry of the unit cell, the outward unit normal
vector N at the unit cell boundairs ∂Y [J ]

0 coincides with E[J ].
Since the same basis vectors are used for the micro- and

macro-scale coordinate systems, the macro-scale Piola trac-
tion vector on the macroscopic surface, which is parallel to
the boundary surface ∂Y [J ]

0 with the outward unit normal vec-
tor E[J ] can be can be written as the area average of the cor-
responding micro-scale Piola traction vector on ∂Y [J ]

0 . For

example, the macro-scale Piola traction vector T̃
(E[1])

asso-
ciated with ∂Y [1]

0 and E[1], whose compnents are {1, 0, 0}T,
can be expressed as follows:

T̃
(E[1]) = P̃ · E[1]

=
⎛

⎜
⎝

1

|Y0|
∫

∂Y0

T (N) ⊗ Yd S

⎞

⎟
⎠ · E[1] = 1

|Y0|
∫

∂Y0

T (N)Y1d S

= 1

|Y0|

⎛

⎜
⎜
⎝

∫

∂Y [1]
0

T (E[1])Y1d S +
∫

∂Y [−1]
0

T (E[−1])Y1 S

+
∫

∂Y [2]
0

T (E[2])Y1d S +
∫

∂Y [−2]
0

T (E[−2])Y1d S

+
∫

∂Y [3]
0

T (E[3])Y1d S +
∫

∂Y [−3]
0

T (E[−3])Y1d S

⎞

⎟
⎟
⎠

(39)

where Eq. (38) has been utilized. Then, due to the anti-
periodicity of the Piola traction vector (4), we apply
T (E[−J ]) = −T (E[J ]) along with Y1|∂Y [J ]

0
= Y1|∂Y [−J ]

0
(J �=

1) to (39) to have

T̃
(E[1]) =

Y1|∂Y [1]
0

− Y1|∂Y [−1]
0

|Y0|
∫

∂Y [1]
0

T (E[1])d S. (40)

Using the equivalent expressions L1 = Y1|∂Y [1]
0

− Y1|∂Y [−1]
0

,

|Y0|= L1L2L3 and
∣
∣
∣∂Y [1]

0

∣
∣
∣= L2L3, we arrive at the follow-

ing relationship:

T̃
(E[1]) = P̃ · E[1] = 1

|∂Y [1]
0 |

∫

∂Y [1]
0

T (E[1])ds (41)

Since the same expression can be obtained for the traction
vectors on the other two boundary surfaces, Eq. (11) has been
proven.
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Anisotropic hyperelastic model with fabric vectors

We consider one class of anisotropic hyperelastic constitutive
models, whose functional form is expressed by means of
the invariants of the right Cauchy-Green (CG) deformation
tensor C along with the so-called “fabric” vector indicating
the direction of reinforcements such as fibers. Although the
application for the macroscopic BVP is assumed, we do not
distinguish the micro- and macro-scale variables below.

The elastic energy functional of the employed anisotropic
hyperelastic model is given as

W = Wvol (J ) + Wiso
(

C̄; A, B
)

(42)

where A and B are the two distinct directions of fiber align-
ment in the reference configuration and can be referred to
as the fibric vectors. Here, Wvol(J ) is the energy function
of the Jacobian J := det F associated with the volumetric
deformation. Wiso

(

C̄; A, B
)

is the isochoric component of
the energy functional by means of the deviatoric part of the
right CG deformation tensor, which is defined as

C̄ = F̄
T

F̄ = J−2/3 FT F = I −1/3
3 C (43)

with F̄ = J−1/3 F and I3 = det C = J 2.
The 2nd Piola–Kirchhoff (PK) stress can be obtained by

differentiating the energy function (42) with respect to the
right CG deformation tensor C as follows:

S = 2
∂W

∂C
= 2

∂Wvol

∂C
+ 2

∂Wiso

∂C
= Svol + Siso (44)

Here, we have defined the volumetric and isochoric compo-
nents of S, Svol and Siso, are respectively expressed as

Svol = 2
∂Wvol

∂C
= J

∂Wvol

∂ J
C−1 (45)

Siso = I −1/3
3 Q : S̄ (46)

where

Q = I − 1

3
C−1 ⊗ C (47)

S̄ = 2
∂Wiso

∂ C̄
= γ̄11 + γ̄2C̄ + γ̄4 (A ⊗ A) + γ̄5

(

A ⊗ C̄ A + ¯C A ⊗ A
)

+ γ̄6 (B ⊗ B) + γ̄7
(

B ⊗ ¯C B + C̄ B̄ ⊗ B
)

+ γ̄8 (A · B) (A ⊗ B) (48)

along with

γ̄1 = 2

(
∂Wiso

∂ Ī1
+ Ī1

∂Wiso

∂ Ī2

)

,

γ̄2 = −2
∂Wiso

∂ Ī2
, γ̄4 = 2

∂Wiso

∂ Ī4
, γ̄5 = 2

∂Wiso

∂ Ī5
,

γ̄6 = 2
∂Wiso

∂ Ī6
, γ̄7 = 2

∂Wiso

∂ Ī7
, γ̄8 = 2

∂Wiso

∂ Ī8

⎫

⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(49)

Here, 1 and I are the 2nd-order identity tensor and the 4th-
order symmetric identify tensor, respectively. Information
about the derivation of these formulae is found in [40].

One of the examples of this class is typified by
Kaliske et al. [38,39], which seems to be reasonable within
the present framework of two-scale coupling analysis with
the micro-macro decoupling scheme. We employ their model
in this study and provide its concrete functional form below.
The volumetric and isochoric parts of the energy functional
in [39] by are respectively given as

Wvol = 1

D
(J − 1)2 (50)

Wiso = Wiso( Ī1, Ī2, Ī4, Ī5, Ī6, Ī7, Ī8; ai , b j , ck , dl , em , fn, go; A, B)

=
3

∑

i=1

ai
(

Ī1 − 3
)i +

3
∑

j=1

b j
(

Ī2 − 3
) j

+
6

∑

k=2

ck
(

Ī4 − 1
)k +

6
∑

l=2

dl
(

Ī5 − 1
)l +

6
∑

m=2

em
(

Ī6 − 1
)m

+
6

∑

n=2

fn
(

Ī7 − 1
)n +

6
∑

o=2

go
(

Ī8 − ς
)o (51)

Here, D, ai , b j , ck, dl , em, fn, go are scalar-valued material
parameters, and Ī1, Ī2, Ī4, Ī5, Ī6, Ī7, Ī8 are the invariant of C̄
defined as follows:

Ī1 = trC̄, Ī2 = 1

2

(

tr2C̄ − trC̄
2
)

,

Ī4 = A · C̄ A, Ī5 = A · C̄
2

A, Ī6 = B · C̄ B,

Ī7 = B · C̄
2

B, Ī8 = (A · B) A · C̄ B

⎫

⎪⎪⎬

⎪⎪⎭

(52)

where ς = (A · B)2.
This model is capable of representing a certain class of

orthotropic hyperelastic behavior with the fibric vectors A
and B as input data. If, for example, we assume B = 0,
then the resulting energy functional can be used for a class
of transversely isotropic materials introduced in [38].
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