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The numerical study is made to demonstrate the applicability of the method of
decoupling multi-scale analysis to the micro–macro evaluation of the mechanical
behavior of fiber-reinforced plastics (FRP) that exhibits inelastic deformations and
internal damage of the matrix material. During the course of this demonstration, it is
confirmed that the reliability of the decoupling method can be guaranteed if the
macroscopic constitutive model is introduced so as to inherit the microscopic
material behavior. To this end, with reference to the results of the numerical material
testing on the periodic microstructures of FRP, we propose an anisotropic elastoplas-
tic-creep-damage combined constitutive model to represent the macroscopic material
behavior and illustrate the characteristics of the inelastic deformations that resemble
the material behavior assumed for plastics at micro-scale. With the identified macro-
scopic material parameters, the macroscopic structural analysis, which is followed
by the localization analysis consistently, can be an actual proof of the utility value
of the decoupling method in practice.

Keywords: decoupling multi-scale analysis; FRP; homogenization; elastoplasticity;
creep; damage

1. Introduction

On recorded history of fiber-reinforced plastic (FRP), much ink has been spent on the
derivation of analytical or approximate expressions for its effective or overall material
properties, and the manifold achievement led to the field of study called micromechanics
and mechanics of composite materials, often along with representative volume elements
(RVE), over which the averaging is performed; see e.g. [1–4] for early developments
and [5–10] as standard textbooks. Although these theoretical developments have
successfully enabled us to understand the roles that individual phases play in the overall
macroscopic behavior of FRP, it has been recognized over the past few decades that
computational approaches are more capable of providing efficiency and flexibility in
designing composite materials. In fact, numerical simulation techniques such as the finite
element method (FEM) are indispensable nowadays to meet advanced demands for
further strengthening of FRP with low cost in engineering practice; see e.g. textbooks
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[11–15] and references therein. However, reflecting the geometrical characteristics of
constituents at the micro-scale, the macroscopic mechanical behavior of FRP is often
too complicated to characterize, especially when FRP undergoes non-linear and/or
inelastic material behavior. This complexity sometimes makes it difficult for us to per-
form reliable numerical simulations and thus has provoked a great deal of controversy.

In this context, the method of multi-scale analysis based on the homogenization the-
ory [16–18] has been recognized as a rigorous methodology for characterizing the
macro-scale mechanical behavior of heterogeneous media with periodic microstructures
(unit cells). Thanks to its rigorous mathematical background,[19] this computational
homogenization approach for FRP enables us not only to reflect the geometrical
features at micro-scale such as layout of fibers, shape, and size of constituents in the
characterization of macroscopic material properties (homogenization process), but also
to reproduce the true micromechanical responses towards the actual external and
macroscopic deformations (localization process). Since the capabilities of these micro-
to-macro and macro-to-macro transitions are favorable even for non-linear problems,
the homogenization-based multi-scale analysis methods have successfully been applied
even to problems involving inelastic material behavior such as damage in FRPs; see
e.g. [20–26].

Nonetheless, its applicability to non-linear/inelastic problems is still limited in prac-
tice, especially when we are concerned with the interaction between the mechanical
responses of micro- and macro-scale structures of FRPs, which can be obtained as a set
of solutions of the so-called two-scale boundary value problem (BVP) derived for a
non-linear homogenization problem. This limited applicability is due to the fact that the
macroscopic constitutive equation in the two-scale BVP is an implicit function of the
solutions of the micro-scale BVP or, in other words, the micro-scale BVP only indi-
rectly represents the macroscopic material response. That is, it is not until the micro-
scale equilibrated stress is determined that the macroscopic stress can be calculated
with the following averaging relation:

~A ¼ 1

jV j
Z
V
AdV ; (1)

which defines the volume average ~A of a second-order tensor A over the unit cell’s
domain with |V| being the volume of domain V. Therefore, if the coupling analysis is
performed to solve the two-scale BVP by the FEM, then the micro-scale BVP must be
associated with an integration point located in a macro-scale finite element (FE) model
and solved for the micro-scale equilibrated stress to evaluate the macro-scale stress by
the averaging relation (1), which must satisfy the macro-scale BVP at the same time.
In particular, when an implicit and incremental solution method with a Newton–
Raphson-type iterative procedure is employed to solve the two-scale BVP, the
micro-scale BVP is to be solved in every iteration to attain the macro-scale equilibrium
state at every loading step. Needless to say, the micro-scale BVP is also non-linear and
therefore requires the iterative method. This type of solution scheme to solve the
two-scale BVP is referred to as the micro–macro (or global–local) coupling scheme
and is typified in [27–33].

The micro–macro coupling scheme is robust and promising in the sense that various
types of macroscopic material behaviors can be captured without knowing their explicit
functional forms of material models if the unit cell is eligible for a RVE. In fact, this
seems to be the only way to evaluate the non-linear macroscopic material response of a

2 K. Terada et al.
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heterogeneous medium when the analytical expression of its macroscopic constitutive
relation is hard to formulate; see e.g. Refs [34,35]. However, the nature of the method
means that it requires a significant amount of computational cost. In fact, the model
size of the macro-scale BVP raises the number of micro-scale BVPs to the second
power, since each macro-scale integration point is associated with its own micro-scale
BVP. Although other remedies [27,36,37] and parallel algorithms [38] can reduce the
cost to some extent, we are bound to say that the coupling scheme is all but useless in
most practical applications.

Therefore, the decoupling of micro- and macro-scale BVPs is indispensable for
applying the two-scale approach based on the homogenization theory to various non-
linear problems encountered in practice. This motivates us to take an alternative
approach, called the micro–macro decoupling scheme.[39,40] The decoupling scheme
strongly relies on the method of numerical material testing (NMT), which corresponds
to the homogenization process for the unit cells, just like the computational homogeni-
zation method for linear problems. To be more specific, assuming the concrete
functional form of the macro-scopic constitutive model, we conduct a series of NMTs
on the numerical specimen, i.e. the unit cell’s FE model, to obtain the non-linear
macro-scale material behavior. By means of the ‘measured’ data in the NMTs, the
material parameters in the assumed constitutive model are determined with an appropri-
ate method of parameter identification. Once the macro-scale material behavior is suc-
cessfully fitted with the identified parameters, the macro-scale analysis can be
performed, and, as may be necessary, the macro-scale deformation history at any point
in the macro-structure can be applied to the unit cell to evaluate the actual micro-scale
response.

The precondition of the decoupling scheme is that we are able to pick up a consti-
tutive model to properly characterize the macroscopic material behavior that would be
obtained from the numerical analysis on the micro-scale BVP. It is noted that, from a
practical point of view, approximated constitutive models allow alternatives, since there
might not be a rigorous model available depending on the type of composite materials.
Once the functional form of an appropriate macroscopic constitutive equation is
assumed, several micro-scale numerical analyses are performed on the unit cell to
obtain its material parameters. The set of micro-scale analyses for this purpose can be
referred to as the NMT, an essential process of the micro–macro decoupling
scheme.[39,40] The concrete procedure of the method is described as follows:

(i) An appropriate constitutive model relevant for the macroscopic material
behavior under consideration is assumed.

(ii) A series of the NMTs is conducted on a unit cell model (FE mesh), which is
regarded as a ‘numerical specimen,’ to obtain the homogenized or macro-
scopic material behavior. Note that the loading patterns here hinge on the
selected constitutive model.

(iii) Material parameters of the assumed constitutive model are identified by
means of the ‘empirical’ data obtained from the NMTs and an appropriate
curve-fitting scheme.

(iv) FE analyses are carried out to solve the macro-scale BVP using the assumed
constitutive model with identified material parameters.

(v) If necessary, after extracting the time series of macroscopic deformation
history from the macroscopic analysis result and applying it as a series of
boundary conditions, the localization analyses are performed to evaluate what

Advanced Composite Materials 3
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has actually been happening inside the unit cell during the macroscopic
deformation process.

Then, the objective of this study is set forth to demonstrate the applicability of the
decoupling multi-scale analysis method to a variety of inelastic material behavior exhib-
ited by FRP. The key angle in this context is that the macroscopic material behavior
must inherit the microscopic one employed for NMT. Since the material models used
in unit cells are supposed to be given in the computational homogenization method, the
homogenized or macroscopic material model to be assumed in step (i) is expected to
fully or partially inherit the micro-scale material characteristics. For example, if the unit
cell model of unidirectional FRP is assumed to be composed of isotropic hyperelastic
materials, the corresponding macroscopic material behavior can be transversely
isotropic hyperelastic. Likewise, if the constituents are elastoplastic materials, the
macroscopic constitutive model should be within the scope of anisotropic plasticity.
Even though micro-scale cracking is taken into account as in [35], the corresponding
macroscopic material behavior may be represented by the anisotropic damage model
approximately. To accomplish the objective from this viewpoint, we set up a sample
problem for unidirectional CFRP whose matrix phase exhibits rate-dependent and
rate-independent inelastic material behaviors with internal damage and carry out a
two-scale de-coupled analysis to confirm the above-mentioned anticipation. During the
course of the confirmation, we propose an anisotropic elastoplastic-creep-damage
combined constitutive model to represent the macroscopic material behavior and
illustrate the characteristics of the inelastic deformations that resemble the material
behavior assumed for plastics at micro-scale. Then, the analogies between the
micro- and macroscopic constitutive models are illustrated in terms of functional
characteristics.

2. Material model for resin in CFRP

In this section, the inelastic material behavior of resin in CFRP is characterized with
reference to the data obtained in the loading–unloading tests. On the other hand, the
carbon fibers are assumed to be linearly elastic and isotropic for the sake of simplicity.
After the test results on the polycarbonate resin are studied, a set of constitutive equa-
tions is introduced to be used for the material model of the resin.

2.1. Uniaxial loading–unloading test for polycarbonate resin

Two sets of uniaxial loading–unloading tests were conducted on standard testing
specimens of polycarbonate resin under deformation rate control at room temperature
(20 °C). Figure 1 shows the obtained nominal stress–strain curves, which were trans-
formed from the corresponding load–displacement curves. Here, two deformation
rates (0.001/s and 0.0001/s) were employed to control the elongation of the speci-
mens, which were subjected to loading until the strain reaches about 5 % and
unloading until the reaction force becomes zero. From these curves, we can itemize
the following five features of the material behavior of the polycarbonate resin:

(a) Residual (or permanent) deformations are observed.
(b) Dependency of the apparent stiffness depends on the strain rates (the faster the

strain rate, the higher the apparent stiffness).

4 K. Terada et al.
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(c) Dependency of the amount of residual deformations depends on the strain rates
(the faster the strain rate, the smaller the residual deformation).

(d) Reduction of the elastic modulus accompanying the progress of deformations
(the elastic modulus during the unloading regime is smaller than that of the
loading regime).

(e) Non-linearity of the unloading curve.

Here, it is reasonable to regard the residual strains pointed out in (a) as plastic or creep
strains, but difficult to distinguish rate-independent or rate-dependent ones only from
features (b) and (c). Also, the reduction of apparent stiffness during the loading regime
is caused not only by inelastic (plastic or creep) deformations, but also by the internal
damage. In fact, feature (d) described for the unloading regime implies the reduction of
elastic modulus even during the loading regime. Finally, though item (e) might be one
of the essential features of the resin, it is enough to incorporate features (a)–(d) into the
decoupling method in view of the purpose of this study.

In summary, the resin under consideration possibly exhibits both the rate-dependent
material behavior accompanying creep strains and the rate-independent behavior accom-
panying plastic strains. At the same time, the elastic modulus can be reduced due to
the material damage at molecule level, implying that the stress transmission ability is
decreased.

Based on the above discussions, in this study, we employ an elastoplastic-
creep-damage combined model to represent the material behavior of the polycarbon-
ate resin in CFRP. The rate-dependent and rate-independent permanent strains are,
respectively, represented with standard creep and elastoplasticity constitutive models,
while the reduction of the elastic modulus is typified in classical continuum damage
theory. The model presented in this study is not probably new, but to the best of
the authors’ knowledge has not been used to characterize the material behavior of
resin in CFRP especially within the framework of homogenization-based multi-scale
method.

Figure 1. Stress vs. strain curves obtained from loading–unloading tests for polycarbonate resin.

Advanced Composite Materials 5
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2.2. Isotropic elastoplastic-creep-damage combined model

An isotropic elastoplastic-creep-damage combined model is introduced for the material
behavior of the polycarbonate resin, whose uniaxial responses are studied above. A set
of constitutive equations for each of elastic, plastic, creep, and damage models is pre-
sented in order, and then unified to form the combined model. Although a considerable
number of studies have been made on the constitutive equations for resin-type materials
within the framework of finite strain–strain theory,[41] the infinitesimal strain theory is
enough for the model employed here, since we are concerned with the analogy between
the micro- and macroscopic material models in this study. In fact, the deformations
observed in the above uniaxial tests were not severely large.

2.2.1. Additive decomposition of inelastic strain

We employ the following additive decomposition of the total strain e:

e ¼ ee þ ep þ ec ¼ ee þ ðepvol þ epÞ þ ðecvol þ ecÞ (2)

where ee, ep, and ec are elastic, plastic, and creep strains, respectively. Here, epvol and ep

are volumetric and deviatoric parts of the plastic strain, respectively, and ecvol and ec are
those of the creep strain. Since the incompressibility of the plastic strains can often be
assumed for standard resin materials, we employ the assumption so that epvol � 0 and
ecvol � 0.

2.2.2. Constitutive equations for elastic materials

The elastic behavior is assumed to be isotropic so that the following generalized
Hooke’s law can be employed:

r ¼ Ce: ee ¼ ðj1� 1þ 2lIdevÞ : ee ¼ j�ev1þ 2lee (3)

where r is the Cauchy stress, Ce is the fourth-order elasticity tensor, κ is the bulk mod-
ulus, μ is the shear modulus, 1 is the second-order identity tensor, and Idev is the
fourth-order transformation tensor that maps a second-order tensor to its deviatoric
components. Also, �ev ¼ tree and ee are the volumetric and deviatoric parts of the elastic
strain, respectively, and the stress can be decomposed into the hydraulic pressure stress
(mean stress) rm ¼ 1

3 ðtrrÞ1 and the deviatoric stress s ¼ r� rm.

2.2.3. Isotropic elastoplastic constitutive law

The rate-independent inelastic behavior of the resin under consideration can be repre-
sented by the classical associative plasticity that assumes the von Mises yield criterion
along with the isotropic non-linear hardening law. That is, we employ the following
yield condition and hardening function:

f ðr; apÞ ¼ ksk �
ffiffiffi
2

3

r
ryðapÞ ¼ 0 (4)

ryðapÞ ¼ ry0 þ Hap þ R0ð1� expð�bapÞÞ (5)

6 K. Terada et al.
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where σy0 is the initial yield stress, H, R0, and β are the material parameters for the
strain hardening. Here, the internal variable ap is the accumulated plastic strain, which
is defined as the time-integrated value of the following equivalent plastic strain rate:

_ap � _�e
p ¼

ffiffiffi
2

3

r
k_epk (6)

The flow rule, hardening rule, loading–unloading condition, and the consistency condi-
tion are, respectively, given as follows:

_ep ¼ _cpN (7)

_ap ¼
ffiffiffi
2

3

r
_cp (8)

f ðr; apÞ� 0 _cp � 0 _cpf ðr; apÞ ¼ 0 (9)

_cp _f ðr; apÞ ¼ 0 (10)

where N ¼ @f =@r ¼ s=ksk is the flow vector, which is an effective second-order tensor
that postulates the flow direction, and _cp is the plastic multiplier, which is a non-negative
scalar variable.

2.2.4. Isotropic creep model

The rate-dependent inelastic deformation is also considered for the resin in this study
and can be realized by the creep strain ec. Then, we assume that the rate of the creep
strain _ec follows the flow rule with the same flow vector N in (7) as

_ec ¼ _ccN (11)

Defining the equivalent creep strain rate _ac � _�e
c
similar to the definition of the equiva-

lent plastic strain (6), we assume the following functional form for its evolution:

_�e
c ¼ C1ð�rÞC2 exp �C3

T

� �
tC4 (12)

_ac ¼
ffiffiffi
2

3

r
_cc (13)

where C1, C2, C3, and C4 are the material parameters. Here, �r ¼
ffiffiffiffiffiffiffiffiffi
3
2 s: s

q
¼

ffiffi
3
2

q
ksk is

the von Mises equivalent stress, T is the absolute temperature, and t is the time. Since
the parameters C3 and C1 are not independent, we fixed the latter parameter at C1 = 1.0
assuming room temperature environments in this paper. For the sake of simplicity, the
time-hardening term is also neglected, implying that C4 = 0 is assumed.

2.2.5. Isotropic damage model

In order to represent the reduction of the elastic modulus, which is pointed out in the
previous section as feature (d), we employ the damage variable that is a function of the

Advanced Composite Materials 7
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deformation history. More specifically, the elastic modulus in (3) is assumed to vary
according to the following form:

E ¼ ð1� DÞE0 (14)

where E is the reduced elastic modulus by the active damage variable 0 <D < 1. Here,
E0 is the elastic modulus of the virgin state of the material. In this study, we assume
that the damage parameter evolves according to the following simple functional form:

Dð�eÞ ¼ d1ð�emaxÞd2 0�D\1 (15)

where d1 and d2 are the material parameters, �emax is the maximum equivalent strain that
the material ever experienced. In this study, a simple measure is assumed for the equiv-

alent strain as �e ¼
ffiffiffiffiffiffiffiffiffiffiffi
2
3 e : e

q
. Then, the maximum value is updated as �emax ¼ �e, if and

only if �e > �emax is satisfied.

2.2.6. Combined model

All the constitutive equations introduced above are unified into the isotropic elastoplas-
tic-creep-damage model for the polycarbonate resin in CFRP.

The elastic strain required to evaluate the stress can be represented as
ee ¼ e� ep � ec in view of (2), but the plastic and creep strains are obtained by the
time integration of the corresponding rates whose evolutions are postulated by the flow
rules (7) and (11), respectively. Since the implicit algorithm is employed for the time
integration, these inelastic strain rates (or increments) are determined by solving the
system of return mapping equations for multipliers _cp and _cc. Therefore, the amount or
share of each strain can be determined as a result of their mutual interaction. On the
other hand, since the material is assumed to suffer internal damage such that the ‘elas-
tic’ modulus is reduced according to the maximum strain ever experienced, the effects
of the inelastic strains on the damage parameter are indirect through the additive
decomposition (2).

There must be room for argument on the employed material models, as they are
somewhat crude. However, they are considered to be enough for the purpose of this
study, since we are concerned with neither the development of new constitutive laws
nor the employment or improvement of more sophisticated models.

3. NMT

In this section, the NMTs are conducted to characterize the macro- and microscopic
material behavior of unidirectional CFRP, composed of polycarbonate resin and fibers.
The method proposed in [40] is adopted for the FE analyses for the NMT, which we
carry out with a general-purpose FEM software, ANSYS.[44] In preparation for the
NMT, we perform the parameter identification for the isotropic elastoplastic-creep-
damage combined model that is presented in the previous section, and investigate the
evolutions of inelastic deformations evaluated with the constitutive model.

3.1. Identification of material parameters

This section is devoted to the identification of the material parameters in the constitu-
tive model employed for the polycarbonate resin of CFRP. That is, using the test data

8 K. Terada et al.
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obtained in Section 2.1, we identify the material parameters used in the isotropic
elastoplastic-creep-damage combined constitutive model introduced in the previous sec-
tion. The method of particle swarm optimization (PSO),[42,43] which is one of the
population-based descent methods, is employed for the identification algorithm.

Prior to the application of PSO, we first determine the elastic modulus as 2.5 (GPa)
directly from the stress–strain curves in Figure 1, noting that the initial inclinations of
the two curves are identical. Since the transverse deformations or Poisson’s effects have
not been measured in the experiments, the one-dimensional version of the employed
constitutive model is used for the identification with the Poisson’s ratio being fixed at
0.3 for three-dimensional cases.

Table 1 presents the identified values of material parameters and Figure 2 shows
the stress–strain curves determined by those values along with the test data. As can be
seen from these results, the identification seems to be successful, since each identified
curve qualitatively reproduces the corresponding empirical ones. In fact, all of the fea-
tures (a), (b), (c), and (d) pointed out in Section 2.1 are observed in the identified
curves; that is, (b) the faster the strain rate, the higher the apparent stiffness, (c) the fas-
ter the strain rate, the smaller the residual deformation, and (d) the elastic modulus dur-
ing the unloading regime is smaller than that of the loading regime.

3.2. Time variation of internal variables

In this section, we present the features of the combined constitutive model employed in
this study by investigating the histories of some internal variables during the deforma-
tion process corresponding to Figure 2.

Figure 3 shows the variation of damage variable D with respect to the total strain.
Since we assume that the internal damage depends only on the total strain, the variation
does not depend on the deformation rate; that is, the curves with different strain rates
are identical.

Figure 4 shows the time variation of plastic and creep strains with respect to the
total strain. In the slower case with strain rate 0:0001=s, the plastic and creep strains
vary with time on almost the same degree. On the other hand, in the faster case with
strain rate 0:001=s, the amount of plastic strain becomes larger than that of creep strain.
That is, as the strain rate is high, the share of the rate-dependent (creep) strain in the

Table 1. Identified values of material parameters.

Material parameters Symbols
Identified
values

Initial elastic modulus
(MPa)

E 2500*

Initial yield stress (MPa) ry0 39.40
Hardening parameters

(MPa)
H 579.4

R0 26.57
β 391.4

Creep parameter C2 3.223
C3 7249

Damage parameter d1 7.272
d2 0.9296

*Fixed value (not identified).
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total strain is reduced and at the same time the rate-independent (plastic) strain
becomes dominant. These features are the manifestations of the discussion at the last
part of Section 2.2 about the mutual interaction between plastic and creep strains.

Thus, the elastoplastic-creep-damage combined model introduced in this study
enables us to reduce the degree of rate dependency as needed and, as an extreme case,
to represent only the rate-independent deformation. However, the deficiencies of the
model are pointed out especially when it is subjected to practical use. First of all,
although it is empirically known that the resin material under consideration exhibits
such a special rate dependency, it can hardly be confirmed only with the test data used
for reference purpose. To validate the modeling, we have to prepare more reliable test
data by conducting elaborate experiments. The second remark arises from the empirical
fact that the residual deformation gradually diminishes after the external loading is
released. The present model cannot reproduce such a time-dependent response. The
third one is the lack of ability for representing the non-linearity of the unloading curve
observed in Figure 1. This is partially due to the assumption that the elastic modulus

Figure 2. Stress–strain curves identified with PSO and test data.

Figure 3. Variation of damage variable with respect to total strain.
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remains constant during the loading. But, less importance is given to this behavior in
this paper, as remarked in Section 2.1.

3.3. Analytical model and conditions for NMT

Figure 5 shows the prepared unit cell model of unidirectional CFRP, which is regarded
as a ‘specimen’ for the NMT. The FE mesh is generated with 10-node tetrahedral ele-
ments. While we employ the combined model for the resin material with the identified
values of the material parameters in the previous section, the nominal elastic properties
(Young’s modulus 230 GPa and Poisson’s ratio 0.2) are used for the fibers.

In order to obtain the numerical test data of the macroscopic stress responses, we
apply six basic patterns of macroscopic strains as loading parameters by imposing the
relative displacements between periodic pairs of nodes on the external boundaries of
the unit cell. This realizes the imposition of periodic boundary conditions for distur-
bance displacements associated with the micro-scale heterogeneity, which are induced
by uniform deformations of the macroscopic strains; see e.g. [40].

Figure 4. Variation of inelastic strains with respect to total strain.
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The six patterns of applied macroscopic deformations are depicted in Figure 6.
Three of them are uniform normal strains without transverse and shear deformations,
while the other three are simple shear stains without normal and transverse deforma-
tions. Two cases of strain rates are taken as in Section 3.1; that is, they are set at
0:0001=s and 0:001=s for both normal and shear strains. In each test case, the macro-
scopic strain component is gradually increased during the loading regime, until it

Figure 5. Unit cell model of unidirectional CFRP.

Figure 6. Deformation patterns for unit cell.
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reaches the maximum 2.5%. The unloading is performed until the macroscopic stress
becomes zero with the same deformation rate being kept.

3.4. Results of NMT

The macroscopic stress–strain curves obtained in the NMT were provided in Figure 7,
which reveal anisotropy due to the micro-scale morphology. As can be seen from
Figure 7(b), the responses in the z-direction are almost linear, though this is a natural
consequence of the linearly elastic response of the fiber, which sustains much greater
stress than the matrix. As a result, neither rate dependency nor damage response is
observed. On the other hand, due to the inelastic and damage responses of the matrix
phase, all the other macroscopic behavior exhibits non-linearity during the loading
regime and reduction of elastic modulus during the unloading regime. In addition, they
are a little rate-dependent, reflecting the effect of creep deformation. Because of the
stress-sustaining ability of the fiber, the rate dependency of the resin, typified in
Figure 2, is less manifested.

It is, therefore, reasonably concluded that macroscopic material behavior generally
follows those assumed for a microstructure (unit cell), though an obvious difference is
anisotropic in elastic and inelastic material behaviors.

4. Macroscopic constitutive law

The discussions about the NMT results in the previous section motivate us to
incorporate the anisotropy into the elastoplastic-creep-damage combined model, which

(a) Unidirectional material   x and y directions (b) Unidirectional material   z direction

(c) Unidirectional material   xy direction (d) Unidirectional material   zx and yz directions

0 0.01 0.02
0

1000

2000

3000

St
re

ss
(M

Pa
)

Strain in the direction of z

0.0001/s
0.001/s

Strain rate

0 0.01 0.02
0

100

St
re

ss
(M

Pa
)

Strain in the direction of x and y

0.0001/s
0.001/s

Strain rate

0 0.01 0.02
0

10

20

30

St
re

ss
(M

Pa
)

Shear strain of zx and yz directions

0.0001/s
0.001/s

Strain rate

0 0.01 0.02
0

10

20

30

St
re

ss
(M

Pa
)

Shear strain of xy direction

0.0001/s
0.001/s

Strain rate

Figure 7. Results of numerical material tests for unidirectional CFRP.
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is introduced in Section 2 for the polycarbonate resin, to represent the macroscopic
material behavior of the unidirectional CFRP. In the following section, we first present
the formulation of the proposed model for the CFRP, and then identify the material
parameters by referring to the NMT results. With the identified parameters, the perfor-
mance of the anisotropic model is demonstrated in terms of the analogy with the corre-
sponding isotropic one that is used for the resin matrix.

4.1. Anisotropic elastoplastic-creep-damage combined constitutive model

In order to represent the macroscopic material behavior of the unidirectional CFRP, we
propose an anisotropic elastoplastic-creep-damage combined model. Since micro- and
macroscopic field variables are defined with respect to the micro- and macroscopic spa-
tial coordinate systems, within the framework of the mathematical homogenization,
they are commonly distinguished in the formulation with different symbols. In this con-
text, the variables in Section 2 are microscopic ones, while those in this section are
macroscopic ones. However, to avoid notational complexity, the same symbols are used
for some of the macroscopic variables in this section. This is possible since the cou-
pling between these variables can be realized only through the boundary conditions on
unit cells; see Ref [40] for the detailed explanations.

4.1.1. Orthotropic elastic constitutive model

Orthotropy is assumed for the macroscopic elastic properties in view of extensibility,
though transverse isotropy is sufficient for the present situation of the unidirectional
CFRP. The corresponding generalized Hooke’s law, which relates the stress and elastic
strain tensors, r and ee, is given as

r ¼ Ce
0: e

e (16)

Here, as in Section 2, the elastic strain is defined as ee � e� ep � ec where e, ep, and
ec are the total, plastic, and creep strain tensors, respectively. Also, Ce

0 is the fourth-
order elasticity tensor in the absence of damage, and the components of the compliance
tensor, which is the inverse of Ce

0, are given as follows:

½Se
0� ¼

1
Exx

� mxy
Exx

� mxz
Exx

0 0 0

� myx
Eyy

1
Eyy

� myz
Eyy

0 0 0

� mzx
Ezz

� mzy
Ezz

1
Ezz

0 0 0

0 0 0 1
Gxy

0 0

0 0 0 0 1
Gyz

0

0 0 0 0 0 1
Gzx

2
666666664

3
777777775

(17)

where Exx, Eyy, and Ezz are the elastic moduli in the directions indicated by the attached
subscripts, and Gxy, Gyz, and Gzx are the shear elastic moduli along the planes indicated
by the subscripts. Also, νxy, νyz, and νzx are the Poisson’s ratios for orthotropic elastic-
ity; for example, νxy is the absolute value of the normal strain in the y-direction with
respect to the normal strain in the x-direction.

14 K. Terada et al.
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4.1.2. Hill’s orthotropic elastoplastic constitutive law

To represent the anisotropic plastic responses of the CFRP, we employ the Hill’s ortho-
tropic model,[45] which assumes the yield function as

/pðr; apÞ ¼
1

2
ðrpHillÞ2 � 1

2
ðryðapÞÞ2 � 0 (18)

where ap is the accumulated plastic strain defined later, and rpHill is the plastic Hill’s
stress defined as

rpHill ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r : Mp : r

p
(19)

Here, ryðapÞ is the hardening function with independent variable ap and is assumed to
have the same function as (5). Also, Mp is the plastic Hill tensor whose components
are given in a matrix form as

½Mp� ¼

Qp þ Rp �Rp �Qp 0 0 0
�Rp Rp þ Pp �Pp 0 0 0
�Qp �Pp Pp þ Qp 0 0 0
0 0 0 2Np 0 0
0 0 0 0 2Lp 0
0 0 0 0 0 2Mp

2
6666664

3
7777775

(20)

where the components are defined as follows:

Pp ¼ 1

2

1

R2
yy

þ 1

R2
zz

� 1

R2
xx

 !
; Lp ¼ 3

2

1

R2
yz

Qp ¼ 1

2

1

R2
zz

þ 1

R2
xx

� 1

R2
yy

 !
; Mp ¼ 3

2

1

R2
zx

(21)

Rp ¼ 1

2

1

R2
xx

þ 1

R2
yy

� 1

R2
zz

 !
; Np ¼ 3

2

1

R2
xy

Here, Rxx, Ryy, Rzz, Rxy, Ryz, and Rzx are referred to as the Hill’s constants for the pres-
ent Hill’s orthotropic plasticity model, and are defined by means of the initial yield
stresses rYxx; r

Y
yy; 	 	 	 ; sYzx as

Rxx ¼ rYxx
rY0

;Ryy ¼
rYyy
rY0

; Rzz ¼ rYzz
rY0

(22)

Rxy ¼
ffiffiffi
3

p sYxy
rY0

; Ryz ¼
ffiffiffi
3

p sYyz
rY0

; Rzx ¼
ffiffiffi
3

p sYzx
rY0

(23)

where rY0 is the reference stress. In this study, the minimum value among all the yield
stress values is taken as the reference.

Under the assumption of associative plasticity, the flow rule with the Hill’s potential
(18) is given by

_ep ¼ _cpMp : r (24)
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where _cp is the plastic multiplier. Also, postulating the equivalent plastic strain rate _�e
p

satisfies the equivalency

rpHill _�e
p ¼ r : _ep; (25)

we introduce the following hardening law as an evolution equation of the accumulated
plastic strain ap

_ap � _�e
p ¼ _cprpHill (26)

The addition of the following loading–unloading conditions completes the Hill’s aniso-
tropic plasticity model:

_cp � 0; /p � 0; _cp/p ¼ 0 (27)

4.1.3. Hill’s orthotropic creep model

In this study, the Hill’s orthotropic model is diverted to represent the macroscopic creep
behavior characterized in the previous section. That is, referring to the Hill’s plasticity
model presented above, we introduce the following creep Hill’s stress, creep flow rule,
and hardening law:

rcHill ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r : M c : r

p
(28)

_ec ¼ _ccM c : r (29)

_ac � _�e
c ¼ _ccrcHill (30)

where _�e
c
is the equivalent creep strain rate and _cc is the creep multiplier, whose evolu-

tion equation is assumed to be almost the same functional form of (13) as

_�e
c ¼ C1ðrcHillÞC2 exp �C3

T

� �
(31)

Here, C1, C2, and C3 are the creep parameters, T is the absolute temperature, and M c is
the creep Hill tensor whose components are given in a matrix form as

M c ¼

Qc þ Rc �Rc �Qc 0 0 0
�Rc Rc þ Pc �Pc 0 0 0
�Qc �Pc Pc þ Qc 0 0 0
0 0 0 2Nc 0 0
0 0 0 0 2Lc 0
0 0 0 0 0 2Mc

2
6666664

3
7777775

(32)

The components here are defined as follows:

Pc ¼ 1

2

1

S2yy
þ 1

S2zz
� 1

S2xx

 !
; Lc ¼ 3

2

1

S2yz

Qc ¼ 1

2

1

S2zz
þ 1

S2xx
� 1

S2yy

 !
; Mc ¼ 3

2

1

S2zx
(33)
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Rc ¼ 1

2

1

S2xx
þ 1

S2yy
� 1

S2zz

 !
; Nc ¼ 3

2

1

S2xy

Here, the Hill’s constants for the Hill’s orthotropic creep model, Sxx, Syy, Szz, Sxy, Syz,
and Szx, must be different from those for the Hill’s plasticity model, but the definitions
have not been settled in the literature. In this study, we employ the minimum elastic
and shear moduli as the reference values for normal and shear deformations, respec-
tively. That is, the following definitions are introduced:

Sxx ¼ Exx

Emin
; Syy ¼ Eyy

Emin
; Szz ¼ Ezz

Emin
(34)

Sxy ¼ Gxy

Gmin
; Syz ¼ Gyz

Gmin
; Szx ¼ Gzx

Gmin
(35)

where

Emin ¼ minðExx;Eyy;EzzÞ (36)

Gmin ¼ minðGxy;Gyz;GzxÞ (37)

Although the validity of these definitions is hard to verify, the elastic modulus can be
similar to the elastic limits, i.e. yield stresses, in the creep model, since they are equiva-
lent to the stress values at the initial state without creep deformations.

4.1.4. Anisotropic damage model

It can be reasonably assumed that the macroscopic damage behavior resembles the
microscopic one of the resin matrix in that the elastic modulus is reduced according to
the maximum strain ever experienced. Thus, we present the anisotropic damage model
below by diverting the one introduced in Section 2.2.5, although it is somewhat crude
in considering the anisotropy.

The same functional form as in (15) is assumed for the damage variable D. Assum-
ing that each of the nine elastic moduli in the orthotropic elasticity tensor Ce

0 has its
own damage state, we introduce multipliers for the components Cij defined as

siðDÞ ¼ ð1� SiDÞ i ¼ 1; 2; 	 	 	 ; 9 (38)

where Si is the damage coefficients for D. Thus, the damaged orthotropic elasticity
matrix is determined according to the single damage variable along with the nine
damage coefficients such that

½CeðDÞ� ¼

s1C11 s4C12 s5C13 0 0 0
s2C22 s6C23 0 0 0

s3C33 0 0 0
s7C44 0 0

s8C55 0
sym: s9C66

2
6666664

3
7777775

(39)
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4.2. Performance assessment of macroscopic constitutive law

In this section, the performance of the anisotropic elastoplastic-creep-damage combined
model proposed above is verified. First, we identify the material parameters of the pro-
posed macroscopic material model by applying the PSO as in Section 2 with the NMT
results provided in Section 3 being the input data. Then, to confirm the validity of this
constitutive model, the stress–strain curves with these identified parameters (referred to
as identified curves) are compared with the NMT results.

4.2.1. Preparation

The macroscopic constitutive model has lots of parameters to be identified, say about
24. Also, easiness or difficulty in the identification is different from each other. It is,
therefore, unwise to identify all the parameters uniformly and simultaneously in view
of identification accuracy. Keeping this in mind, we exclude some parameters that can
be easily identified with analytical or numerical schemes, and that can be fixed with
assumed constraint conditions. The parameters excluded in the identification are
explained here.

If both the fibers and matrix are assumed not to exhibit inelastic behavior, the mac-
roscopic orthotropic elasticity tensor can be excluded from the design variables in the
PSO. In fact, we can easily identify its components by conducting the NMTs, which is
nothing but the standard linear homogenization analyses. Here, the homogenized elastic
material is assumed to be orthotropic in this study, although the behavior of the xy-
plane of the unit cell depicted in Figure 5 is not isotropic strictly.

Also, the initial yield stresses for x- and y-directions and those of yz- and zx-
planes are the same, respectively. Therefore, we impose constraints beforehand such
that rYxx ¼ rYyy and sYyz ¼ sYzx. On the other hand, creep parameters C1 and C3 are
dependent since only one level of temperature is considered in this study. Therefore,
only C3 is considered as an unknown parameter with C1 = 1.00 being fixed. Also,
since there is no damage during the loading in the z-direction as can be seen in
Figure 7, we exclude the corresponding damage coefficient S2 by setting it at a
very small number.

4.2.2. Parameter identification by PSO

Under the above conditions, we apply the PSO to identify the material parameters of
the proposed macroscopic constitutive equations. The NMT results obtained in Sec-
tion 3, which are the relationships between the macroscopic stress and strains, are taken
as test data for the identification. The following function is used to evaluate the identifi-
cation errors with p being a vector that stores the parameters to be identified with the
PSO:

vðpÞ ¼
Xntest
a¼1

1

n½a�step

1

kr½a�refk
Xn½a�step

i¼1

kr½i;a�ðpÞ � r̂½i;a�k
0
@

1
A (40)

where ntest is the number of macroscopic deformation patterns in the NMT (6 in this
study) and n½a�step is the number of loading steps for pattern α. Here, r½i;a�ðpÞ: is the mac-
roscopic stress tensor for test α that is evaluated at the i-th step with the assumed
parameters p, while r̂½i;a� is the corresponding stress tensor obtained in the NMT

18 K. Terada et al.

D
ow

nl
oa

de
d 

by
 [

Pr
of

es
so

r 
K

en
jir

o 
T

er
ad

a]
 a

t 0
5:

36
 1

7 
Ju

ne
 2

01
4 



conducted in Section 3. Also, r½a�ref is the reference tensor to normalize the error for test
α, and is assumed to be the macroscopic stress with the maximum square norm. In
addition, the norm of second-order tensor A: is defined as kAk � ffiffiffiffiffiffiffiffiffiffiffi

A : A
p

.
The identified values of the material parameters are provided in Table 2 and the

identified curves with these values are shown in Figures 8 and 9, where the curves
obtained in the NMT are depicted for comparison. As can be seen from the figures, the
identified curves seem to be of good approximations to the NMT results for the unidi-
rectional CFRP. Discrepancies acknowledged here can be resolved by the introduction
of more reliable optimization schemes, but at the same time might mark the limitation
of the reproducing performance of the proposed macroscopic constitutive model. This
point may well be left to argue in another opportunity, since the agreement between the
identified curves and those of the NMTs seem to be satisfactory from practical points
of view.

Figures 10 and 11 show the variations of the accumulated plastic strains evaluated
by means of the proposed macroscopic constitutive equations with the identified param-
eters with respect to the macroscopic axial and shear strains. More specifically,
Figure 10 presents the evolutions of the macroscopic accumulated plastic strains when
all the NMT patterns of the macroscopic strain components are separately used to eval-
uate the proposed macroscopic model at the deformation rate 10�4=s. Note here that
the increase of the accumulated plastic strains in response to the macroscopic normal x-
and y-directions becomes gentle during the loading regime. The reason is that the
elastic modulus is gradually reduced due to the damage evolution and, as a result, the

Table 2. Identified values of macroscopic material parameters.

Material parameters Symbols & identified values

Young’s modulus for x- and y-directions [MPa] Exx= Eyy 9048*
Young’s modulus for z-direction [MPa] Ezz 116,300*
Shear modulus for xy-plane [MPa] Gxy 2023*
Shear modulus for yz- and zx-planes [MPa] Gyz=Gzx 2797*
Poisson’s ratio for x–y-directions νxy 0.3106*
Poisson’s ratios for y–z and z–x-directions νyz= νzx 0.2021*
Initial yield stresses for x- and y-directions [MPa] rYxx ¼ rYyy 63.13
Initial yield stress for z-direction [MPa] rYzz 2851
Initial yield stress for xy-plane [MPa] sYxy 24.78
Initial yield stresses for yz- and zx-planes [MPa] sYyz ¼ sYzx 23.22
Hardening parameter 1 [MPa] H 923.1
Hardening parameter 2 [MPa] R0 95.12
Hardening parameter 3 β 504.8
Creep parameter 1 C1 1.000**
Creep parameter 2 C2 1.165
Creep parameter 3 C3 5034
Damage parameter 1 d1 0.5976
Damage parameter 2 d2 0.7428
Damage coefficient 1 S1 14.71
Damage coefficient 2 S2 10−10**
Damage coefficient 3 S3 5.152
Damage coefficient 4 S4 29.45
Damage coefficient 5 S5 12.78
Damage coefficient 6 S6 15.65

*Evaluated with linear homogenization analysis.
**Fixed value (not identified).
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increase of the plastic Hill’s stress becomes gentle. Also, the accumulated plastic strain
in response to the macroscopic normal strain in the z-direction is very small, since the
fibers, which sustain much higher stresses than the matrix, are assumed not to exhibit
inelastic deformations. On the other hand, Figure 11 shows the evolutions of the mac-
roscopic accumulated creep strains when the proposed macroscopic model is evaluated
separately with all the NMT patterns of the macroscopic strain components at a defor-
mation rate 10�4=s.

It is interesting to note that the accumulated plastic strains depicted in Figure 10
become large when the macroscopic shear deformations are imposed. But, the accu-
mulated creep strains depicted in Figure 11 show the opposite trend. That is, the
macroscopic normal strains tend to induce large amounts of the accumulated creep
strains than the macroscopic shear strains do. This tendency is due to the fact that,
with the present macroscopic constitutive model equipped with (31), the larger the
creep strain, the higher the creep Hill’s stress rcHill, and that macroscopic normal
strains induce higher stresses than macroscopic shear strains in the case of
unidirectional CFRP. On the other hand, the amount of plastic strain is determined
according to not only the plastic Hill’s stress, but also the assumed values of yield
stresses and hardening characteristics. These are the functional features of the
proposed model, which are inherited from the isotropic model used for the
polycarbonate resin.

It follows from these discussions that the most important process of the two-scale
analysis based on the homogenization is to introduce appropriate material models of

Figure 8. Identified curves with NMT results for unidirectional CFRP (axial and transverse
directions).
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constituents in a unit cell. This remark is applicable to both coupling and decoupling
schemes, since material models in a unit cell are common. In conclusion, even if the
identification errors for macroscopic material parameters are considered, the decoupling
scheme has a higher utility value than the coupling one from practical viewpoints in
that the former requires much less computational cost than the latter. It might be,

Figure 9. Identified curves with NMT results for unidirectional CFRP (shear directions).
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Figure 10. Evolutions of macroscopic accumulated plastic strains evaluated with identified
parameters (strain rate: 10�4=s).
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however, true that this conclusion applies mainly to the case such that the combination
of constituents is simple as FRPs.

5. Macroscopic analysis and localization analysis

To demonstrate the capability of the method of decoupling two-scale analyses, we carry
out the macroscopic analysis using the proposed macroscopic constitutive model with
the material parameters identified in the previous section. Also, the macroscopic analy-
sis is followed by the localization analysis, which enables us to reproduce the micro-
scopic responses of the unit cell, located at a macroscopic material point of interest,
during the macroscopic deformation process.

5.1. Analytical conditions

The FE model of the macrostructure of CFRP under consideration in the two-scale
analysis is depicted in Figure 12 along with the constrained and loading conditions.
This FE model consists of 10,000 twenty-node hexahedral elements and the total num-
ber of nodes is 32,149. As indicated in this figure, the fibers are assumed to be oriented
in the direction inclined counterclockwise by 30° with respect to the x-axis. The FE
analysis for this macroscopic model is conducted with ANSYS,[44] into which the pro-
posed anisotropic elastoplastic-creep-damage combined model is installed as a user-
material subroutine.

All the degrees of freedom of the nodes located on the upper and lower surfaces of
the red frame indicated in Figure 12 are fixed at zero throughout the FE analysis. On
the other hand, the displacement in the x1-direction is enforced on all the nodes on the
upper and lower surfaces of the yellow frame, while their degrees of freedom in the y-
and z-directions are not constrained. The maximum value of the enforced displacement
is 1.5% of gage length 109.3 mm, which is actually the total length of the specimen
excluding the chuck lengths.

For the displacement control FE analysis, we prepare three levels of deformation
rates, ‘Fast,’ ‘Moderate,’ and ‘Slow,’ each of which is set so that the total time needed
for all the deformation processes is 12, 120, or 1200 s, respectively. The enforced
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Figure 11. Evolutions of macroscopic accumulated creep strains evaluated with identified
parameters (strain rate: 10�4=s).
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displacement is changed at each deformation rate and linearly with respect to real time
during both the loading and unloading regimes.

Figure 12. Finite element model of CFRP specimen.
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Figure 13. Results of macroscopic and localization analyses (von Mises equivalent stress distri-
butions).

Advanced Composite Materials 23

D
ow

nl
oa

de
d 

by
 [

Pr
of

es
so

r 
K

en
jir

o 
T

er
ad

a]
 a

t 0
5:

36
 1

7 
Ju

ne
 2

01
4 



5.2. Analysis result

The result for ‘Slow’ case is given on the right-hand side of Figure 13, which shows
the distributions of macroscopic von Mises stress along with the deformed configura-
tions. Due to the orthotropic material behavior, the transverse deformation is observed
in spite of the axial loading. Also, the stresses are concentrated around the regions
between the base of the measurement section and the chucks, and reflect the material
axis defined by the fiber orientation.

In order to demonstrate the localization capability of the decoupling two-scale
analysis method, we extract the macroscopic deformation history at the point where the
maximum value of the macroscopic von Mises stress is observed and impose it to the
unit cell model in Figure 5 by following the method of NMT presented in Ref [40].
The results of these microscopic analyses are shown on the left-hand side of Figure 13,
which illustrate the distributions of microscopic von Mises stress. As can be seen from
the figure, the microscopic stress responses well reflect the macroscopic deformation
history.

Figures 14–16 show the time variations of the macroscopic accumulated plastic and
creep strains and the macroscopic damage variable for ‘Slow’ case. As can be seen
from the figures, they have almost the same tendencies; that is, relatively large amounts
of inelastic strains and damage variable are observed in the regions subjected to

0.2 0.4 0.6 0.8 1.0 1.1 1.2 1.30
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400 seconds
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900 seconds

1200 seconds

Loading

Unloading

Figure 14. Results of macroscopic analysis (accumulated plastic strain distributions).
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macroscopically shear deformation. These are indeed typical of this type of orthotropic
materials.

Figure 17 shows the relationships between the enforced displacements and the
resultant forces in the loading direction that are the sums of the reaction forces
evaluated at the constrained nodes on the chucks. As can be seen from the figure,
the difference between the results of ‘Fast’ and ‘Moderate’ cases is small, while
‘Slow’ case typifies the effect of rate dependency. These are due to the fact that
the faster the macroscopic deformation rate, the more dominant the plastic deforma-
tion in comparison with the creep deformation and that the slower the macroscopic
deformation rate, the more dominant the creep deformation that is rate-dependent.

Let us examine further the shares of inelastic deformations that illustrate the
points of the above discussion about the macroscopic material responses at different
deformation rates, which are reasonably represented by the proposed constitutive
model. Figures 18 and 19 show the evolutions of the accumulated plastic and creep
strains evaluated at the point used for the localization analysis. It should be noted
that the vertical axis of the latter graph is logarithmic scale. It can be seen from
the figure that the plastic deformation is dominant and the creep deformation
becomes very small throughout the FE analysis of ‘Fast’ case. This implies that the
rate dependency is hard to appear when the macroscopic deformation rate is very
high, and vice versa. Also, Figure 18 indicates that there is no evolution of plastic
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Figure 15. Results of macroscopic analysis (accumulated creep strain distributions).
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strain during the unloading process, while the creep strain slightly increases even
during the unloading process as illustrated in Figure 19. These features of the
macroscopic constitutive model are also that of the microscopic ones for the resin
matrix that are typified in Figures 14 and 15, respectively.
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Figure 16. Results of macroscopic analysis (damage variable distributions).
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Figure 17. Results of macroscopic analysis (reaction force vs. enforced displacement).
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6. Conclusions

This study has been devoted to the illustration to confirm that the homogenization-
based decoupling two-scale analyses are possible, even though relatively complex mate-
rial behavior involving plastic-creep coupled deformations and internal damage is
assumed for unit cells. It followed from the illustration that the accuracy of decoupling
two-scale analyses was guaranteed to some degree, if appropriate macroscopic constitu-
tive models could be formulated so as to inherit the features of the microscopic ones
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Figure 18. Results of macroscopic analysis (evolution of accumulated plastic strains).
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Figure 19. Results of macroscopic analysis (evolution of accumulated creep strains).
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introduced to unit cells. The concrete results have been achieved on the premise that
the decoupling two-scale analyses would be applied to characterize the non-linear
mechanical behavior of CFRP, which has relatively simple combination of constituents,
and are itemized as follows:


 An isotropic elastoplastic-creep-damage combined constitutive model was intro-
duced to characterize the inelastic material behavior of the polycarbonate resin
commonly used in CFRP with reference to the actual test data.


 With the constitutive model along with the identified material parameters, a series
of NMT was conducted to derive the macroscopic material responses.


 Referring to the NMT results and inheriting the features of the constitutive model
for the resin, we proposed an anisotropic elastoplastic-creep-damage combined
constitutive model to represent the macroscopic material behavior of CFRP. The
proposed model is just a direct extension of the isotropic counterpart and is con-
structed as the combination of the existing anisotropic inelasticity models.


 By means of the PSO, we identified the material parameters of the proposed
anisotropic constitutive model with reference to the NMT results. With the identi-
fied curves being compared with the NMT results, the accuracy of identification
was qualitatively confirmed. At the same time, the macroscopic material behavior
represented by the proposed constitutive model was studied in view of the anal-
ogy with the isotropic counterpart assumed for the microscopic material behavior.


 Using the proposed macroscopic constitutive model along with the identified
material parameters, we presented a numerical example of the decoupling two-
scale analysis. The macroscopic analysis is conducted on the specimen model,
which was assumed to be made of CFRP, and was followed by the microscopic
analysis to demonstrate the localization capability within the framework of
homogenization theory. Paying attention to a single macroscopic material point,
we examined the evolutions and shares of plastic and creep strains, and damage
variables during the loading and unloading processes at different macroscopic
deformation rates.

The important aspect of this study presupposes the use of the decoupling scheme that
is superior to the coupling one in view of practical use for CAE. In fact, the authors
have applied their efforts to promote the method of decoupling two-scale analysis based
on homogenization theory by implementing the method of NMT along with identifica-
tion functions and by installing the integrated environment for the micro- and macro-
scopic analyses into the general-purpose FEM software.[40,46] It is conceded that the
results of this study are also eligible for the promotion.

However, the decoupling scheme is just an approximate scheme, since assumed
macroscopic constitutive models do not always properly represent the macroscopic
material behavior. Thus, two-scale analyses are responsible for the degree of
approximation, and the coupling scheme can be used rather than the decoupling
one, if the highest level of accuracy is desired irrespective of computational costs.
Also, since large deformations of resin matrix have to be considered for design of
FRP, the methodology presented in this study must be verified within the frame-
work of finite strain theory. These issues and some others are to be addressed in
the future.
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