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Abstract The present study proposes topology optimiza-
tion of a micro-structure for composites considering the ma-
cro-scopic structural response, applying a decoupling multi-
scale analysis based on a homogenization approach. In this
study, it is assumed that topology of macro-structure is
unchanged and that topology of micro-structure is unique
over the macro-structure. The stiffness of the macro-
structure is maximized with a prescribed material volume
of constituents under linear elastic regime. A gradient-based
optimization strategy is applied and an analytical sensitivity
approach based on numerical material tests is introduced.
It was verified from a series of numerical examples that the
proposed method has great potential for advanced material
design.

Keywords Topology optimization · Decoupling
multi-scale analysis · Micro-structures · Homogenization

1 Introduction

It is well known that the mechanical behavior of a compos-
ite material mainly depends on the geometric properties of
the micro-structure, such as material distribution, shape or
size of the material, and that the dependency will be remark-
ably increased in the non-linear regime in which material
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reaches fracture. It is becoming known that non-linear mate-
rial behavior always closely relates to its micro-structure,
for instance, in order to improve strength or toughness of a
metallic material, crystal micro-structure enabling improve-
ment of strength or toughness will be surveyed, and in order
to improve energy-absorption capacity or wear resistance
of synthetic rubber, micro-composition is investigated. It is
said that what these composites have in common is that it
will be possible to maximize the mechanical performance
of a macro-structure, if ‘types or kinds of materials to be
mixed or the combinations thereof’ are optimized and ‘the
geometric properties of micro-structure’ are optimized.

As production technologies enabling control of material
properties of micro-structure will be realized in the near
future, this study proposes a method to maximize structural
performance of macro-structure by optimizing the material
distribution, topology in this study, in the micro-structure.

So far, study on topology optimization most often has
been mainly developed for topology of macro-structure.
With regard to the preceding studies on topology opti-
mization of the micro-structure, for example, Sigmund
(1994) proposes a method, named ‘inverse-homogenization
method’, to determine topology of micro-structure that
enables exhibiting stiffness equivalent to the prescribed
material stiffness CH. Sigmund and Torquato (1997) intro-
duce a method, as its application, to determine topology of
micro-structure that enables exhibiting a thermal expansion
coefficient equivalent to the prescribed thermal expansion
coefficient, and Larsen et al. (1997) also introduce topol-
ogy of micro-structure able to exhibit negative Poisson’s
ratio. Amstutz et al. (2010) also propose an algorithm for
optimization of micro-structures based on an exact formula
for the topological derivative of the macroscopic elasticity
tensor and a level set domain representation, where maxi-
mization of shear modulus and maximization/minimization
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of Poisson’s ratio are described. However, these prominant
studies focus on the micro-structure only, that is, governing
equations consisting of a micro-scale boundary value prob-
lem (BVP) only, and do not basically consider behavior of
macro-structure.

For the optimization problem dealing with both micro-
and macro-structures, several methodologies have been
developed. For example, Rodrigues et al. (2002) propose a
hierarchical approach to optimize topologies of the micro-
and macro-structure simultaneously, by considering behav-
iors of both structures. Niu et al. (2009) optimize topologies
of both micro- and macro-structures for maximizing fun-
damental frequency based on the general homogenization
theory, where topology of microstructure is assumed to be
unique over the macro-structure. Su and Liu (2010) also
propose an optimal micro-structure design considering the
influence of macro-structural behavior based on the couple-
stress theory. However, these applications are limited to
linearly elastic structural problems although they are easy to
implement.

In the meanwhile it is necessary to introduce a multi-
scale analysis based on the homogenization method in order
to solve the above-mentioned micro-macro coupling BVP.
With regard to multi-scale analysis based on the homog-
enization method, many studies have been reported, and
various analytical methods considering materially and/or
geometrically nonlinear mechanical behavior have been
proposed by, for example, Feyel and Chaboche (2000),
Smit et al. (1998), Terada and Kikuchi (2001), Wieckowski
(2000), and Zheng et al. (2000). As those methods solve
all micro- and macro-scale BVPs simultaneously by recip-
rocal exchange in order to achieve higher precision on a
micro-macro two-scale BVP, they are considered theoret-
ically established and reliable. However, those analytical
approaches are rarely applied to actual designing because
they are theoretically difficult to understand and the compu-
tational costs are enormous.

The reason for it is briefly described as follows. Firstly,
the macroscopic constitutive equation is an implicit function
of the solutions of the micro-scale BVP and, thus, the micro-
scale BVP indirectly represents the macroscopic material
response. That is, it is not until the micro-scale equilibrated
stress is determined that the macroscopic stress can be cal-
culated. Therefore, if the two-scale coupling analysis is per-
formed by the finite element method, the micro-scale BVP
must be associated with an integration point located in a
macro-scale finite element model and solved for the micro-
scale equilibrated stress to evaluate the macro-scale stress
by the averaging relation (1) introduced later, which must
satisfy the macro-scale BVP at the same time. In particu-
lar, when an implicit and incremental solution method with
a Newton–Raphson type iterative procedure is employed
to solve the two- scale BVP, the micro-scale BVP is to

be solved in every iteration to attain the macro-scale equi-
librium state at every loading step. This type of solution
scheme, i.e. the micro–macro coupling scheme, requires a
significant amount of computational cost.

Taking this problem into account, (Terada et al. 2008,
2013; Watanabe and Terada 2010) propose a new method
called decoupling multi-scale analysis to solve the micro-
macro two-scale BVP by decoupling. This method is
intended to reduce the computational costs by introducing
an approximate approach called numerical material tests
(NMTs), for the problems including numerically expen-
sive calculations such as micro-macro two-scale BVPs with
material and/or geometrical nonlinearity. Furthermore, as
this approach is intended to solve a micro-scale BVP and a
macro–scale BVP independently, this is a theoretcally-clear-
approximate approach, and is superior in general-purpose
use, because the method is applicable to various materials
using the same framework. The details including the neces-
sity and numerical accuracy of the decoupling multi-scale
analysis compared to the micro-macro coupling multi-scale
analysis are exclusively discussed in Watanabe and Terada
(2010). Taking these characteristics into account, the decou-
pling of micro- and macro-scale BVPs is “indispensable”
for applying the two-scale approach based on homogeniza-
tion to various nonlinear structural problems encountered in
practice.

As our final goal is to develop an optimization scheme
for material designs considering materially and/or geomet-
rically nonlinear structural behavior, this study applies the
decoupling multi-scale analysis for optimization problems,
specifically topology optimization of micro-structure con-
sidering the structural response of macro-scale structural
analysis. However, as the present study stands only at the
basic stage of introduction of the decoupling multi-scale
analysis to optimization problems, this paper handles only
topology optimization of micro-structure to maximize stiff-
ness (to minimize compliance) of the macro-structure on
the assumption of simply applying a two-dimensional plane
strain problem in a linear elastic regime. Extension of
our method to more realistic and complex nonlinear struc-
tural problems will be challenged in our next step. In that
sense, the present paper is placed at the introductory mate-
rial for the decoupling multiscale topology optimization
considering nonlinear material models. Of course, for the
micro–macro two–scale BVPs under an assumption of lin-
ear elasticity, no distinct advantage and difference exists
between the coupling and decoupling schemes in computa-
tional costs.

In this study, we try to determine an optimal unique
topology of a micro-structure to maximize stiffness of a
macro-structure with keeping the initial topology of the
macro-structure as a range of feasibility for actual pro-
duction. The reason for not changing the topology of the
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macro-structure is to consider actual design circumstances
in which the topology of a macro-structure is to be fixed to
almost one by various conditions, such as in designing tires
of automobiles using a synthetic rubber.

In the following, outline of the decoupling multi-scale
analysis is described first, and then material models used
in this study and the process of formulating the optimiza-
tion problem are described. With regard to the algorithm for
optimization, we use the optimality criteria method (Patnaik
et al. 1995), hereinafter shown as OC method, on the basis
of the gradient-based method that is effective in numerical
analysis. In this paper, an analytical method on the basis of
the adjoint method is proposed as the derivation of sensitiv-
ity, and the process of formulation is explained. Finally, the
optimization method proposed in this paper is verified by a
series of numerical examples.

2 Decoupling multi-scale analysis based
on homogenization approach

2.1 Outline

Decoupling multi-scale analysis (Terada et al. 2013;
Watanabe and Terada 2010) differs from a general approach
to solve both parts of a micro- and macro-two-scale BVP
simultaneously by maintaining coupling, but to solve the
same problem as two independent boundary value prob-
lems by decoupling the boundary value problems. First,
with regard to the micro-scale BVP, we extract a periodic
micro-structure called ‘unit cell’, identified based on the
homogeneous method, and then simulate the material tests
on the micro-structure, regarding it as a numerical experi-
ment. Then, by converting the results of micro-analysis to
the macro-material parameters, we regard the conversion
as measuring the material response of the macro-structure.
A series of processes to identify macro-material behavior
through numerical analysis on a unit cell like this is called
a ‘numerical material test’. In this study, as we assume
linearly elastic material, we calculate a macro-stress �

from the micro-stress σ obtained from micro-analysis, and
then convert it into macro-material stiffness C

H. Then, the
macro-scale BVP is solved by directly using the macro-
material stiffness.

In the meantime, conventional linear multi-scale analysis
calculates macro-material stiffness CH by introducing char-
acteristic displacement (generally expressed as χ ) on the
assumption that the prescribed macro–strain E given to the
unit cell has a linear relation with fluctuation displacement.
However, the decoupling multi-scale analysis neither needs
existence of characteristic displacement nor the assumption
between the prescribed strain and the fluctuation displace-
ment. As the method identifies the macro-stiffness from

results of the numerical material test on the unit cell,
it differs theoretically from the conventional micro-macro
coupling multi-scale analysis. In the following, decoupling
multi-scale analysis for the linear elastic model is outlined.
Refer to the literatures (Terada et al. 2013; Watanabe and
Terada 2010) for details of the decoupling scheme applied
for nonlinear structural problems.

2.2 Micro-scale BVPs

Macro-structure is defined as a homogeneous body with
force equivalent to the non-homogeneous elastic body hav-
ing periodic micro-structure in the state of force equilib-
rium. Here, force equilibrium means that macro-stress �

at an arbitrary point x in a macro-structure depends on
a periodic micro-structure (unit cell) characterizing non-
homogeneity, and is obtained by average volume of micro-
stress σ distributed in the unit cell as shown in the following
equation,

� = 1

|Y |
∫

Y

σdy = 〈σ 〉 . (1)

Here, Y means the periodic micro-structure field, and y,
called a micro-scale variable, shows a position vector of
an arbitrary point in a micro-structure. Similarly, the rela-
tion between macro-strain E and micro-strain ε is shown as
follows:

E = 1

|Y |
∫

Y

εdy = 〈ε〉 . (2)

Micro-strain ε in (2) is defined by micro-displacement
field w(x, y) in a unit cell as follows:

ε = ∇sym
y w, (3)

where w is assumed to be divided into two segments as
shown in (4): (i) E · y, a term distributed linearly in propor-
tionate to macro-strain, and (ii) u∗, fluctuation displacement
which shows a gap from the linear distribution caused by
the linear displacement field and heterogeneity,

w = Ey + u∗. (4)

Here, as usual in the computational homogenization, the
fluctuation displacement u∗ is restricted to be periodic on
the boundary ∂Y of the unit cell, so that

u∗|∂Y [k] = u∗|∂Y [−k] , for k = 1, 2 on ∂Y. (5)

As shown in Fig. 1, if the unit cell is a rectangular
parallelepiped and its boundary is placed parallel to the
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Fig. 1 Traction force vector t of a unit cell and macro-stress vector t̃

coordinate axis, ∂Y [k] is a boundary which is parallel with
Y [k] line, i.e., the boundary on which the orthonormal basis
vector ek , is to be the normal vector. From the periodicity
of the fluctuation displacement, the following restriction is
obtained for the actual displacement:

w[k] − w[−k] = EL[k]. (6)

In other words, this is a formula for constraint with respect
to the relative displacement vector between boundary sides
of periodicity to be coupled. For simplicity, we set as
w[k] := w|∂Y [k] . Also, L[k] is called a side vector of a unit
cell that couples corresponding material points on a pair of
boundaries in ek-axial direction of a rectangular unit cell,

L[k] := Y |∂Y [k] − Y |∂Y [k−1] . (7)

The other periodic boundary condition of a unit cell is
that micro-traction force vector t [n] = σ · n on a bound-
ary having a unit vector n is to be imposed anti-periodic
condition on the boundary of the unit cell to be coupled,

t [k] + t [−k] = 0, (8)

where we set t [±k] := t [±ek ] for simplicity. By integrat-
ing and averaging the micro-traction force vector t on the
periodic boundary at the boundary of the unit cell, the
macro-stress vector t̃ can be obtained as the following
equation (see Figs. 1 and 2),

t̃
[k] = � · ek

= 1

|∂Y [k]|
∫

∂Y [k]

σ · ekdy = 1

|∂Y [k]|
∫

∂Y [k]

t [k]dy. (9)

By an equation adding the micro-scale equilibrium equa-
tion along with the constitutive law for the linearly elastic
materials with elastic moduli C to the abovementioned

external material points

q k
1

q k
2 R k

2

R k
1

(a)

(b)

Fig. 2 a Concept of external material points having degrees of
freedom for relative displacement vector and macro-stress vector, b
degrees of freedom of relative displacement and the corresponding
reaction force at an external material point in 2D

equation, a micro-scale BVP is defined. These equations are
re-written after rearrangement as follows:

∇y · σ = 0

σ = C : ε
ε = ∇sym

y w

� = 〈σ 〉

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

in Y, (10)

t̃
[k] = 1

|∂Y [k]|
∫

∂Y [k]

t [k]dy

w[k] −w[−k] = EL[k]

⎫⎪⎬
⎪⎭ on ∂Y [k]. (11)

2.3 Extended system of a micro-scale BVP considering the
external material points

Here, according to the literatures (Terada et al. 2013;
Watanabe and Terada 2010), a formula employing a concept
of external material point is introduced in contrast to bound-
ary conditions about an aforementioned micro-scale BVP.
First, a constraint condition to relative displacement around
periodic boundary of a unit cell is written as follows:

w[k] − w[−k] = q [k], (12)

with

q [k] = EL[k], (13)

where q[k] means relative displacement vector between
boundary sides of periodicity to be coupled. Also, as this
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is a two-dimensional problem, L[k] can be written as
follows:

L[1] =
{
l[1] 0
}T

and L[2] =
{

0 l[2]
}T

, (14)

where l[1], l[2] show length of boundary sides of a rectangu-
lar parallel to e1, e2 axes respectively, namely, l[1] = |∂Y [2]|
and l[2] = |∂Y [1]|.

Terada et al. (2013) and Watanabe and Terada (2010),
as shown in Fig. 2, placed arbitrary material points for
each periodic boundary side ∂Y [k] (k = 1, 2) to the direc-
tion of boundary normal lines respectively, and defined it
as an ‘external material point’, and provided two degrees
of freedom (DOFs) on each material point in parallel with
e1, e2 axes, and allocated components of relative displace-
ment vector q [k] to the DOFs of the external material points.
Namely, (12) is a formula to control amount of relative dis-
placement, which is calculated by the actual displacement
vector of two points on the periodic boundaries to be cou-
pled. In other words, the external material point is simply
introduced as a control point for relative displacement and
has no physical meanings. As even the coordinates of the
external material points are arbitrary, the points are sim-
ply located near the corresponding boundaries as shown in
Fig. 2.

Accordingly and consequently, as shown in (13), in order
to provide arbitrary components of macro-strain E to the
unit cell in the numerical material test, it is enough to control
the components of relative displacement q [k]j at the external
material point (Fig. 3). Here, in order to make the mean-
ing of (12) and (13) clear, the deformation of body and
the corresponding macro-strin E, together with relative dis-
placements q are depicted in Fig. 4, where the parentheses
on E indicates the tensile direction performed in the numer-
ical material tests and l[1] and l[2] are assumed to be unit
length for simplicity.

Now, if the relative displacement q
[k]
j in (12) is given

as a known vector, it just means that relative displacement
w
[k]
j − w

[−k]
j is given. The surface traction force vector t [k]j

on the boundary ∂Y [k] will turn out to be unknown. Con-
sequently, the macro-stress vector t̃

[k]
j , the average of the

surface traction force vector t
[k]
j over the boundary ∂Y [k]

will also turn out to be unknown.
However, if the reaction force of an external material

point corresponding to known components of relative dis-
placement vector q [k]j is expressed as R[k]

j , it is nothing but

the definite integral of traction force vector t [k]j linearly over
the corresponding periodic boundary. Namely,

R[k] =
∫

∂Y [k]

t [k]dy. (15)

(w
a
, w

b
)

Y[1]

Y[-1]

q[1]= w
c
-w
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, w

q
) (w
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, w

s
)

= w
r
-w

p

w
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q

= ...
......

...

(w
c
, w

d
)

pair of two constrained points

Fig. 3 Pair of constrained points and relative displacement vector

Consequently, in relation to (9), it is understood that the
value of reaction of an external material point, (15), divided
by a length of boundary line of the unit cell |∂Y [k]| comes
out to be an unknown macro-stress component �jk . That is,

�jk = t̃
[k]
j = R

[k]
j

|∂Y [k]| . (16)

At this stage, when tensile numerical material tests are per-
formed to three directions (11), (22), (12) independently,
the components of the macro-material stiffness CH can be
determined as follows:

C
H
pqrs = �(rs)

pq (17)

For implementation, (16) and (17) can be specifically
expressed using the discrete formulation as follows:

� =
⎧⎨
⎩
�11

�22

�12

⎫⎬
⎭ =

⎧⎪⎨
⎪⎩

t̃
[1]
1
t̃
[2]
2

t̃
[1]
2 = t̃

[2]
1

⎫⎪⎬
⎪⎭ , (18)

q[1]=
1

0
q[2]=

0

0

q[1]=
0

0
q[2]=

0

1

q[1]=
0

1
q[2]=

1

0

E = 1
0

0
0

(11)

(22)

(12)

E = 0
0

0
1

E = 0 0.5
00.5

Fig. 4 Original and deformed homogenized bodies of unit cells (left)
and its relation between macro-strain E and relative displacements
q[k](k = 1, 2) for 2D case, where l[1] and l[2] are assumed to be unit
length for simplicity
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and

C
H =
⎡
⎣C

H
11 C

H
12 C

H
13

C
H
12 C

H
22 C

H
23

C
H
13 C

H
23 C

H
33

⎤
⎦ =
⎡
⎢⎣
�

(11)
11 �

(22)
11 �

(12)
11

�
(11)
22 �

(22)
22 �

(12)
22

�
(11)
12 �

(22)
12 �

(12)
12

⎤
⎥⎦ . (19)

As a results, by using the macro-material stiffness CH

given by the above numerical material test, it becomes
possible to solve the macro-scale BVP.

This means resolving a micro-scale BVP including DOFs
of newly introduced artificial external material points by
providing relative displacement at the periodic boundary
side to be coupled gives us the reaction force R

[k]
j corre-

sponding to the DOFs. This determines the macro-stress
vector t̃ [k]j by dividing by the length of the corresponding
boundary. The macro-material physical properties necessary
for macro structural analysis are to be obtained by directly
using the macro-stress vector t̃ [k]j .

From this regard, if a micro-scale BVP is once resolved,
it is possible to induce physical properties of macro-material
from the response obtained, irrespective of material models
to be used. That is to say, macro-material physical prop-
erties even having nonlinear behavior can be estimated or
identified using a similar framework.

For the details of the finite element analysis of a unit cell
with external material points, it is referred to Appendix.

3 Definition of design variable and material model
for micro-structure

3.1 Definition of design variable

This section defines design variables for optimization and
describes a micro-material model for composites. The mate-
rial to be used in this study is a linearly elastic material
excluding voids made of two-phase composite material con-
sisting of two solid materials in micro-scale field, as shown
in Fig. 5 (left, above). In this study, we use the finite element
method to solve the micro-scale BVP, and define the design

microstructure

i

i

Fig. 5 Concept of two-phase material optimization

variable as volume fraction of constituent materials of each
finite element in a unit cell,

si = ri

r0
. (20)

In the above formula, si means design variable, and is
defined as a continuously varying function between 0 ≤
si ≤ 1 similar to in the cases of the general topology opti-
mization. Subscript i (= 1, .., nele) means the i-th finite
element and the subscript nele is the number of elements in a
unit cell. r0 and ri show height of an arbitrary finite element
and phase-2 material in a unit cell respectively, as shown in
Fig. 5 (left, below).

Accordingly, in case si = 0, phase-1 occupies the ele-
ment, and in contrast, in case si = 1, phase-2 occupies it. In
the case of 0 < si < 1, it is considered the mixture of both
phases.

3.2 Material model for micro-structure

In this study as a material model for composite micro-
structure, multiphase material model in Kato et al. (2009)
assumed to be isotropic, linearly elastic material is used.
The multiphase material model is what the concept of
SIMP method (Zhou and Rozvany 1991) (Solid Isotropic
Micro-structure with Penalization of intermediate densi-
ties), widely used to single porous material, is enlarged to
composite and is the same as the multiple material model
(Bendsøe and Sigmund 1999) in linear elastic case. The
effective material stiffness is defined as follows:

C = (1 − s
η
i

)
C1 + s

η
i C2. (21)

Here, C is a material stiffness in the linear elastic regime,
and is identical to that in (10). As clearly seen from the
equation, it is understood that the material stiffness coeffi-
cient C explicitly depends on design variable si . C1 and C2

are known specific material stiffness of phase-1 and phase-2
respectively, and remain unchanged during the optimiza-
tion. η is the power-law factor that does not guarantee the
physical meaning.

4 Setting of optimization problem

Optimization problems are generally defined by objec-
tive function f (s), equality constraint condition h(s), and
inequality constraint condition g (s). The small bold italic
letter s represents an array containing design variable si
arranged in a row, i.e., it means design variable vector.

Hereafter, we present the process of formulation of an
optimization problem handled in this study. As the objec-
tive is to maximize the stiffness of macro-structure, the
following equations are formulated on the assumption that
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maximizing stiffness of the macro-structure is equivalent to
minimizing the compliance. With regard to the constraint
condition, we provide an equality constraint condition for
the volume of phase-2 in the unit cell not to vary during
optimization. In this optimization problem, as we set the
only two kinds of material to exist, it means that the vol-
ume of phase-1 will not vary simultaneously as a whole unit
cell. Furthermore, as the whole structure co-occupies one
unit cell, it is self-evident that the volume of each individ-
ual material will not vary as a whole macro-structure. Then,
the optimization problems expressed by the matrix form are
shown as follows:

min f (s) = F Td, (22)

h (s) =
∫

Y

si dY − V̂ = 0, (23)

sL ≤ si ≤ sU i = 1, ..., ns. (24)

Here, F and d are external force vector and nodal dis-
placement vector of the whole system of macro-structure,
respectively. sL and sU are the lower and the upper
bounds of design variables, ns shows the number of design

yes

: design variabless Start

Initialize FEM

Numerical material tests (NMTs) 

FE analysis of macro-structure

Sensitivity analysis 

Optimization

End

converged?

Fig. 6 Flowchart of optimization procedure for the proposed method

variables, which corresponds to the number of finite ele-
ments in the unit cell nele here. V̂ is the prescribed total
volume of phase-2 material in the unit cell.

As the optimization algorithm by the gradient-based
method is used in this study, sensitivities of the objective
function and constraint with respect to the design variable
si , ∂f/∂si and ∂h/∂si respectively, should be obtained after
resolving the two-scale BVP. By incorporating the thus-
obtained sensitivity into the optimality criteria method, the
optimized solution at that time is obtained. Then, the solu-
tion is subjected to repeated calculations until the solution
is converged (Fig. 6). In the following section, derivation
of sensitivity of objective function is explained. As the sen-
sitivity of constraint with respect to the design variable is
derived as the same approach as that of the general topol-
ogy optimization, the explanation for it is eliminated in this
paper.

5 Sensitivity analysis

5.1 Sensitivity of objective function

In this section, the process to obtain sensitivity of objective
function f with respect to design variable si is explained.
Specifically, the sensitivity is derived by the adjoint method,
more accurately, the analytical adjoint method. First, the
objective function f is converted to equivalent objective
function f̄ with a constraint condition of discretized for-
mulation of equilibrium equation Kd = F , K as global
stiffness matrix of macro-structure,

f̄ (s) = dTKd − d̃
T
(Kd − F ) , (25)

where d̃ is an adjoint vector. Next, the above (25)
is differentiated by design variable si and arranged as
follows:

∂f̄

∂si
=
⎛
⎝dTK︸︷︷︸

FT

−d̃
T
K

⎞
⎠ ∂d

∂si
− d̃

T ∂K

∂si
d. (26)

Then, it should be noticed that the adjoint vector d̃

does not depend on design variable si , because the adjoint
vector d̃ is arbitrary. In this equation, the term unable
to be obtained explicitly is a differential term regarding
displacement ∂d/∂si . Then, when the adjoint vector d̃ is
placed as d̃ = d to make the amount in the parenthe-
sis of the first term in the right side zero, the implicit
differential term disappears. By rearranging (26) again,
the equation is transformed to the form that is able to
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obtain a solution explicitely and easily, as shown in the
first line of the following (27). Furthermore, by revers-
ing the equation to the notation according to the finite
element level, as shown in the second line, the sensitiv-
ity of the objective function can be easily obtained, if the
derivative of macro-material stiffness matrix ∂CH/∂si is
calculated as,

∂f̄

∂si

(
= ∂f

∂si

)
= −dT ∂K

∂si
d

= −
∫

�

ET ∂C
H

∂si
Ed�, (27)

where E denotes the macro strain obtained by macro-
scale BVP, and not the given macro-strain used in numer-
ical material tests. Thus, the macro-scale sensitivity can
be separately obtained if the remaining term, ∂CH/∂si ,
is calculated. In the following section, we propose the
derivation of the sensitivity, ∂CH/∂si , in an analytical
formulation.

5.2 Derivation of sensitivity of macro-material
stiffness tensor

Recalling the tensor formulation of (17), we transform its
component into the following expression in terms of (1),

C
H
pqrs = �(rs)

pq

= 1

|Y |
∫

Y

σpq

(
ε(rs)
)

dy

= 1

|Y |
∫

Y

σ
(
ε(rs)
)
: E(pq) dy

= 1

|Y |
∫

Y

C : ε(rs) :
(
ε(pq) − ε∗(pq)

)
dy

= 1

|Y |
∫

Y

C : ε(pq) : ε(rs) dy, (28)

where we rewrite the strain field of fluctuation as ε∗ =
∇sym
y u∗. In the fourth equilibrium, the relation ε(pq) =

E(pq) + ε∗(pq) is employed and in the fifth equilibrium, the
term with fluctuation strain ε∗ is eliminated in terms of (33),
where the fluctuation strain ε∗ is used instead of the virtual
fluctuation strain field δε∗ for its arbitrariness.

Differentiating (28) with respect to design variable si
yields

∂CH
pqrs

∂si
= 1

|Y |
∫

Y

∂C

∂si
: ε(pq) : ε(rs) dy

+ 1

|Y |
∫

Y

C : ∂ε
∗(pq)

∂si
:
(
E(rs) + ε∗(rs)

)
dy

+ 1

|Y |
∫

Y

C :
(
E(pq) + ε∗(pq)

)
: ∂ε∗(rs)

∂si
dy. (29)

Here, we replace the virtual strain field δε∗ in (33) by
∂ε∗/∂si considering its arbitrariness and periodicity, and
insert the modified equation (33) into (29). This procedure
eliminates the second and third summations of (29), thus
(29) is simply rewritten as follows:

∂CH
pqrs

∂si
= 1

|Y |
∫

Y

∂C

∂si
: ε(pq) : ε(rs) dy. (30)

Finally, for implementation, the discretized formulation
of (30) is written in the following expression:

∂CH
αβ

∂si
= 1

|Y |
∫

Y

ŵe
α

TBT ∂C

∂si
Bŵe

β dy

with
∂C

∂si
= ηs

η−1
i (C2 − C1) , (31)

where ŵe denotes the nodal micro-displacement vector of
an element in a unit cell, and its discretization procedure is
referred to Appendix. Although the symbols for the direc-
tion of the numerical material tests, i.e. (pq) and (rs),
have been abbreviated in (31) for simplicity , they are still
effective. As described in Appendix, the nodal displacement
vector ŵe is obtained as the result of the numerical material
tests.

In the solution procedure, the global nodal displacement
vector for each loading direction, i.e. ŵ(11), ŵ(22) and ŵ(12),
or the condensed version of the displacement, i.e. w̃(11),
w̃(22) and w̃(12) introduced in (40), should be stored in order
to calculate each component of ∂CH

αβ/∂si , which is obtained
from combination of the above three kinds of displacement
vectors. For reference, the entire procedure of the proposed
method is described in Fig. 3.

6 Verification of the proposed method by numerical
examples

6.1 Common problems

In this section, the proposed method, topology optimiza-
tion of micro-structure by decoupling multi-scale analysis,
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is verified using a series of numerical examples. The point to
be cleared in this verification is whether or not this approach
can obtain topology of micro-structure which characterizing
the emechanical behavior of macro-structuref properly. For
this purpose, it is designed to easily assess the examples of
verification in the former half by providing basic uniform
deformation to a simple macro-structure model constructed
by a 4-node rectangular element in order to avoid difficulty
in assessing the results of optimization. In the numerical
examples in the latter half, comparative verification was per-
formed among the macro-structures with increased number
of finite elements and with conflicting geometric properties.
In this verification, it should be noticed that any example
of optimization is ‘non-uniqueness’ that means any solution
for optimization is not unified. This means that mathe-
matically plural solutions for optimization may exist for
the same objective function. Therefore, it is possible for
the same topology optimization problem to lead to a dif-
ferent solution due to different computers used, and both
results are the optimum solutions. Obtaining a different
topology in the same unit cell might be caused by minor
errors in the numerical analysis, e.g., intrinsic faint errors
in a computer or in calculation program; the phenomenon
itself is numerically correct as introduced in Sigmund and
Pettersson (1998).

This situation for the optimization solution not to be uni-
fied is caused by a ‘uniform deformation’ which occurs in
a unit cell. Such deformation occurs when boundary con-
ditions of a unit cell have periodicity and all the finite
elements in a unit cell are provided with the same physical
properties. A situation like this is often seen in the initial
structure before starting the optimization calculation. At this
time, when the sensitivity of the objective function ∂f /∂si
(vector) is calculated, all the elements show the same value
of sensitivity, and the contribution of each element to the
objective function is assessed as equal. Accordingly, from
the theoretical viewpoint, further optimization will not be
calculated.

But, in this case, despite the existence of inevitable minor
errors as mentioned above, we are able to continue the
optimization calculation by tracing the minimal difference
among elements of ∂f /∂si . In such cases, the authors have
confirmed through our experience that three scenarios will
develop as follows: (a) topology remains unchanged, almost
keeping the same initial stage, (b) topology disturbed by the
abovementioned difference becomes disturbed and mean-
ingless due to dependency on the initial value of design
variable, characteristic of the gradient-based method, or
(c) topology stagnates showing checkerboard pattern intro-
duced in Diaz and Sigmund (1995) and Jog and Haber
(1996).

In this study, as one of the countermeasures to avoid this
problem, we employed the mesh-independent filter method

proposed by Bendsøe and Sigmund (2003), Sigmund and
Pettersson (1998), evaluated as the most effective, as fol-
lows:

∂f̃

∂si
= 1

si

N∑
j=1

Ĥj

N∑
j=1

Ĥj sj
∂f

∂sj

with Ĥj = rmin − dist(i, j). (32)

In the above equation, dist(i, j) shows the center-to-
center distance of ith and jth finite elements, rmin, called
a filter radius, determines a range of elements to be
filtered.

In the numerical examples here, we tried to obtain the
final topology with two phases distinguished as clearly as
possible by using a filter with rather large radius rmin at the
beginning of optimization to avoid locally stagnant topol-
ogy and tuning the radius gradually smaller. In this study,
the minimum value of rmin is set to be a slightly larger
value than the center-to-center distance between adjacent
elements to avoid numerical instability.

6.2 Case of a simple structure discretized with a 4-node
rectangular element

This numerical example is to verify whether or not a reason-
able topology is obtained when a macro-structure, modeled
with a simple structure discretized with a 4-node rectangu-
lar element, is provided with a uniform deformation. The
macro-structure of a square with a side of 100 mm is mod-
eled using a plane strain element. The material used inside
the micro-structure is assumed to be of two kinds (two-
phase composite material consisting of two solid materials
in micro-field) excluding voids. Here, the material stiffness
of phase-2 (black) is set larger than that of phase-1 (white).
All the material used is assumed to be a linearly elastic
model. The material properties used are shown in Table 1.
With regard to the power-law factor η, shown in (21), we
used as η = 5 in every case.

The shape of the unit cell is set to as a square, and the
length of a side is normalized and set to the unit length.
Finite elements used were 8-node rectangular elements, and
the number of elements was 400 (20 x 20). At the initial
stage before optimization, we assumed that every element

Table 1 Material data

Young’s modulus (MPa) Poisson’s ratio

phase–1 10 0.3

phase–2 10000 0.3
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Fig. 7 a Conceptual diagrams
of uniform tension/compression
deformation of macro-structure,
(b), (c) the optimized topology
of micro-structure (a unit cell
and its patch); b Case, the radius
of a filter rmin is 0.051(the
minimum value) until the
number of optimization steps
reaches 100 and thereafter the
filter was eliminated, c rmin is
reduced from 0.251 to 0.051
(the minimum value) by degrees

(a) (c) (b) 

was included in each phase-1 and phase-2 by 50 % respec-
tively. Thus, the initial value of the design variable was set
to si = 0.5 in every element. The total volume of material
included in the structure was set to remain unchanged dur-
ing the optimization. In this connection, we used the same
assumption for all the unit cells used in this paper.

Hereafter, results of optimization obtained in the numer-
ical examples are explained. First, Fig. 7a shows a con-
ceptual diagram of deformation provided to the macro-
structure. We provided 10 % strain as uniaxial tensile or
compression deformation. Figure 7b shows the result of
optimization in a case that the radius of the filter rmin was
set to be a slightly larger value (0.051) than the center-to-
center distance (0.05) between adjacent elements until the
number of optimization steps reached 100, and thereafter
the filter was eliminated. On the other hand, Fig. 7c shows
the results of optimization with a thicker layer of phase-2
than in the previous cases, because we reduced the radius of
the filter gradually according to the increase of the number
of optimization steps for longer distance initially set among
5 elements (initial rmin = 0.05 × 5 + small value 0.01 =
0.251). This is due to the problem of non-uniqueness, which
confirmed that different topologies were obtained accord-
ing to the setting of the filtering radius. As far as these
two results are concerned, either exhibits the most suitable
structure to increase stiffness for either direction tensile or
compression.

Next, Fig. 8 shows the result of optimization when the
macro-structure is subjected to a simple shear deforma-
tion. The topology obtained shows the material distribution
with the inclination of 45 degrees from the horizontal line,
which is the result we expected. In some cases, topol-
ogy turned around 180 degrees with respect to e2-axis, i.e.
topology with the inclination of -45 degrees, was obtained.
This result also introduces the non-uniqueness problem and
the obtained both macro-material stiffness matrices CH are
identical.

From the above examples, it is confirmed that the pro-
posed method can determine a mechanically reasonable
topology for behavior of a simple macro-structure.

6.3 Cases for various macro-structures

Considering the verification results in the previous section,
the proposed method for several representative behaviors
of macro-structure, including bending deformation, is to be
verified in this section. In the following examples, we used
a macro-structure with 8-node rectangular elements, and
assumed plane strain condition.

Figure 9 shows the result of optimization when a uni-
form load of 1.0kN/mm was applied to a beam 200 mm
long and 100 mm high. Figure 9 top shows the distribu-
tion of the horizontal stress σxx (MPa) with deformation
and the middle shows the distribution of shear stress σxy

(MPa). From Fig. 9 it is understood that the horizontal

Fig. 8 Conceptual diagrams of uniform shear deformation of macro-
structure and the optimized topology of micro-structure (unit cell and
its patch)
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Fig. 9 Result of topology optimization of micro-structure in case of a
macro-cantilever beam: deformation and horizontal stress σxx diagram
(top), deformation and shear stress σxy diagram (middle), optimized
micro-structure (bottom)

stresses dominate at both the top and bottom ends on the
left boundary of the beam, and shear stresses are shown to
almost the whole area of the macro-structure, although the
shear stresses are rather small compared to the maximum
horizontal stress. The optimized micro-structure shows that
topology with a thick layer of the phase-2 arranged horizon-
tally as a reinforcement for horizontal stresses and diagonal
reinforcement against shear stresses is obtained. From the
above results, it is considered that the optimization structure
is reasonable as concerns structural mechanics.

Figure 10 shows the result of optimization of a macro-
structure that is modeled from a right half-section of a
simple slender beam. In this example, a uniformly dis-
tributed load of 6.0kN/mm was applied on the upper surface
of the beam. The upper diagram in Fig. 10 shows its
deformation and horizontal stress distribution. As clearly
noticed from the diagram, the macro-structure is a struc-
ture in which the horizontal stress dominates and large shear

Fig. 10 Results of optimization of micro-structure in case of a macro-
slender beam: deformation and horizontal stress σxx diagram (top) and
optimized micro-structure (bottom)

stress does not occur because of low beam height (Dia-
gram of shear stress is omitted). As the result, the optimized
micro-structure shows that most of the phase-2 material is
arranged to the direction of the horizontal axis, and the
topology shows slightly diagonal to reinforce against the
shear stresses. Here, looking at deeper inside of Fig. 10,
one may notice that the slightly diagonal thin layer in the
obtained topology is one-node hinged layout. Although the
obtained topology is structural reasonable as mentioned
above, this kind of layout may be cured by using more
advanced filter method such as Morpho–logy–based black
and white filter developed by Sigmund (2007).

Figure 11 shows the results of optimization using a
macro-structure of a deep beam under the same structural
condition. As the stress distribution of the macro-structure
considerably differs because of difference in height of a
beam, this is to verify whether or not optimization of
micro-structure properly recognizing the difference of stress
distribution is obtained. Figure 11 left shows distribution of
shear stress σxy (MPa), and Fig. 11 center shows distribu-
tion of vertical stress σyy (MPa). As the absolute value of
horizontal stress is so small, a diagram of horizontal stress
σxx is omitted. From the diagram it is understood that the
distribution of shear stress dominates on the line connect-
ing the loading points to the supporting point. With regard
to the distribution of vertical stress, large compression stress
occurs adjacent to a loading point and vertical support-
ing point, and especially at the vertical supporting point,
large stress concentration exceeding -250 (MPa) is seen.
As the result, topology reinforced by diagonal direction for
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Fig. 11 Results of topology
optimization of micro-structure
in case of a macro-deep beam:
shear stress σxy (left) and
optimized micro-structure
(right), vertical stress σyy
(middle) and optimized
micro-structure (right)

shear stress and upright direction for vertical stress appeared
on the optimized micro-structure. Consequently, it is con-
sidered that the topology of micro-structure considering
characteristics of macro-structure is obtained.

From all these optimization calculations, it is verified that
the approach proposed in this study can optimize topology
of a micro-structure by reflecting mechanical behavior of
the macro-structure in the linear elastic regime.

6.4 Conclusion

The purpose of this study is to propose an approach to max-
imize the performance of macro-structure by optimizing the
topology of micro-structure of composite material. In this
study, an optimization method that is intended to maximize
the stiffness of a macro-structure under the new framework
of introducing decoupling multi-scale analysis into topol-
ogy optimization is proposed, and the proposed method was
verified through various numerical calculations.

Main results of this study are as follows:

• It was verified that the proposed method reflects
the mechanical behavior of macro-structure with high
fidelity and that the method optimizes topology of
micro-structure by all the optimization examples.

• An analytical sensitivity approach was formulated
considering both micro- and macroscopic structural
response. In this methodology, no extra assumption is
necessary which is concerned with the linear relation
between micro- and macro–scale deformation defined
by the characteristic displacement.

• In this paper, we implemented topology optimization
of microstructure for the micro–macro two–scale BVPs
under an assumption of linear elasticity. As mentioned
in the Introduction, no distinct advantage and difference
exists between the coupling and decoupling schemes in

computational costs under the linear elastic regime. It
is expected that this approach will be extended to non-
linear structural problems in considering the essential
effect of decoupling multi-scale analysis.

Acknowledgments This work was supported by MEXT KAKENHI
Grant Numbers 23560561, 23656285. These supports are gratefully
acknowledged.

Appendix: Finite element analysis for a unit cell
with external material points

For preparation of the finite element analysis (FEA) for
the micro-scale BVP, the spatial domain of the unit cell is
discretized to generate its FE mesh. The principle of vir-
tual work for micro-structure is formulated considering the
first equation in (10) and anti-periodicity condition (8) with
some mathematical rearrangement as follows:

∫

Y

δε∗ : σ dy =
∫

Y

∇sym
y δu∗ : σ dy = 0, (33)

where δu∗ and δε∗ denote the virtual fluctuation displace-
ment field and its strain field satisfying the periodic condi-
tion, respectively. The virtual work expression (33) is dis-
cretized in the finite element sense assuming the following
approximation:

w =
nnode∑
α=1

Nαŵ
e
α or w = Nŵe

, (34)

δw =
nnode∑
α=1

Nαδŵ
e
α or δw = Nδŵe

, (35)
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ε =
nnode∑
α=1

Bαŵ
e
α or ε = Bŵe

, (36)

δε =
nnode∑
α=1

Bαδŵ
e
α or δε = Bŵe

, (37)

where N is the general shape function and B the B-operator,
respectively. ŵ

e indicates the nodal micro-displacement
vector of an element in a unit cell. Furthermore, we sim-
ilarly discretize δu∗ and δε∗ as δu∗ = N

(
δd̂

∗e
)

and

δε∗ = B
(
δd̂

∗e
)

. The discretized formulation of (33) can

be written by inserting these equations as follows:
nele∑
e=1

{(
δd̂

∗e
)T ∫

Ye

BT
CBdy
(
ŵe)} = 0. (38)

As the virtual fluctuation displacement δd̂
∗e is arbitrary, the

discretized formulation of (33) is expressed by assembling
(38) over the unit cell as:

Kmŵ = 0 with Km =
nele∑
e=1

∫

Ye

BT
CBdy, (39)

where Km is the global stiffness matrix of a unit cell and ŵ

is the global nodal micro-displacement vector.
At this stage the boundary conditions (12) and (13) have

not been included in (39) yet. In order to establish the
extended micro-scale BVP aforementioned, the relative dis-
placement q is embedded to (39) as constraints by replacing
pairs of DOFs in ŵ. For this purpose, each external mate-
rial point is also ‘discretized’ to an element with a single
node which has two DOFs and no mass. Since the external
material points enable us to control the components of the
macro-scale stress and deformation, as explained above, the
node corresponding to an external material point is referred
to as a control node in this study. Thus, we obtain an
extended system of FE-discretized equations involving four
additional DOFs of two control nodes. In the following, we
introduce some specific usages of the two control nodes to
solve the extended system.

First, the macro-scale strain is assumed to be known; that
is, all the components of the macro-strain E are given as
data. Using (13), we obtain all the components of the nodal
relative displacement vector q [k] at the two control nodes.
Then, given all the components q [k]i , we solve the extended
system of FE equations with the appropriate number of
‘two-point’ constraints realized by (12).

This procedure starts from applying a transformation
matrix � such as,

w̃ = �ŵ, (40)

where � is an operator which transforms ŵ to w̃ and w̃ is
the nodal displacement vector in which some components

are replaced by the components of q [k]. For example, con-
centrating only on q[1], we impose the corresponding two
points on the boundaries ∂Y [−1] and ∂Y [1] whose DOFs are
defined as (wa, wb) and (wc, wd), respectively, to be peri-
odically constrained. Then, we can establish w̃ from ŵ as
shown in Fig. 3, namely

ŵ = {w1 w2, ..., wa wb, ..., wc wd, ..., wN

}
(41)

and

w̃ =
{
w1 w2, ..., wa wb, ..., q

[1]
1 q

[1]
2 , ..., wN

}
(42)

with wc − wa = q
[1]
1 and wd −wb = q

[1]
2 . (43)

where N is the total number of DOFs in the unit cell with-
out the number of DOFs of the external material points.
Of course, as the above example is simply for one set of
the constrained points on the ∂Y [−1] and ∂Y [1], all other
constrained points have to be considered in w̃ at the same
time. Note that one set of q [k](k = 1 or 2) can control all
constrained points staying on ∂Y [−k] and ∂Y [k], see again
Fig. 3.

Then, inserting (40) into (39) and pre-multiplying the
operator � by both sides of (39) yields,

K̃
m
w̃ = 0 with K̃

m = �Km�T. (44)

This linear equations can be condensed depending on the
distribution of components of q [k] in w̃. After solving this
linear equation, unknown components in w̃ are determined.
The results of the FEA contain not only the micro-scale dis-
placement w̃, strain ε and stress σ , but also the reaction
force R[k] as aforementioned. This means that R[k] can be
obtained by (15) since the traction force vector t [k] on ∂Y [k]
is obtained by the Cauchy law t [k] = σ ek . Therefore, the
macro-stress �jk can be computed from (16), without per-
forming a numerical integration on (1). Finally, as shown
in (19), the macro-material stiffness CH can be obtained
by computing the macro-stress �jk separately three times
according to the corresponding relative displacements.
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