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Abstract The present study proposes a topology optimiza-
tion of composites considering elastoplastic deformation
to maximize the energy absorption capacity of a structure
under a prescribed material volume. The concept of a so-
called multiphase material optimization, which is originally
defined for a continuous damage model, is extended to
elastoplastic composites with appropriate regularization for
material properties in order to regularize material parame-
ters between two constituents. In this study, we formulate
the analytical sensitivity for topology optimization con-
sidering elastoplastic deformationand its path-dependency.
For optimization applying a gradient-based method, the
accuracy of sensitivities iscritical to obtain a reliable opti-
mization result. The proposed analytical sensitivity method
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takes the derivative of the total stress which satisfies equi-
librium equation instead of that of the incremental stress and
does not need implicit sensitivity terms. It is verified that
the proposed method can provide highly accurate sensitivity
enough to obtain reliable optimization results by comparing
with that evaluated from the finite difference approach.

Keywords Topology optimization · Analytical sensitivity
analysis · Elastoplasticity · Composites · Plane stress
condition

1 Introduction

Structural composites such as fiber-reinforced plastic, alloy
and concrete have been developed in the expectation that
they will perform various functions appropriate to vari-
ous purposes and usages. One of the advantages of such
composites from the mechanical viewpoint is that they
enable us to control the mechanical behavior of composite
materials by effectively combining materials with different
characteristics. This makes it possible to obtain materials
with intended mechanical characteristics appropriate for the
environment or conditions in which the materials will be
applied.

Today, structural design intended to maximize the
mechanical characteristics (advantages) of materials consti-
tuting each composite, taking into sufficient consideration
their material nonlinearity, has increasingly been promoted.
Often seen are structures such as metallic vibration dampers
using the plastic deformation performance of low-yield-
point steel alloys, fiber-reinforced concrete that prevents
brittle fractures, and hysteretic damping composite rubber,
which are designed to have improved toughness or energy
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absorption capacity based on their plasticity. Since design
taking into consideration such complex mechanical behav-
ior is extremely difficult, computer-based numerical exper-
iments are employed to find an optimal structure that sat-
isfies intended objectives or given conditions. Use of such
numerical analysis techniques, however, is still not effec-
tive in finding an optimal structure, and so trial-and-error
calculations end up being used. It is therefore necessary to
develop a method of structural optimization to improve the
energy absorption capacity of a structure through effective
use of the material nonlinearity of composites.

Meanwhile, most studies concerning structural optimiza-
tion focus on problems relating exclusively to simple struc-
tures composed of a single, linear elastic material, because
studying complex structures raises high calculation costs
and is associated with difficult theories. Studies on opti-
mization considering the material nonlinearity of a single
material have reported various findings under the theme
of sensitivity analysis. Regarding plastic material models,
Yuge and Kikuchi (1995), Schwarz and Ramm (2001),
Maute et al. (1998) and Schwarz et al. (2001) address
optimization focusing on continuum models while Choi
and Santos (1987), and Ohsaki and Arora (1994) discuss
optimization considering elastoplastic behavior in discrete
structures such as a truss structure. Bugeda et al. (1999)
study shape optimization focusing on continuum damage
models.

As to the structural optimization of composites, many
studies have addressed the problems of determining the
optimal angle of fiber in a fiber-reinforced composite
(Hammer 1999) (Stegmann and Lund 2005) and of deter-
mining the optimal layout of constituent materials (Gibian-
sky and Sigmund 2000) (Sigmund and Torquato 1997), but
they mostly focus on a linear elastic regime, as do the stud-
ies focusing on a single material. Moreover, to the best of the
present authors’ knowledge, few studies have been reported
on a method of optimization which takes into consideration
both composites and material nonlinearity. For example,
Swan and Kosaka (1997) study topology optimization for
elastoplastic materials using the classical Voigt-Reuss mix-
ing rules, while Bogomolny and Amir (2012) consider the
Drucker-Prager plastic model in studying topology opti-
mization for steel-reinforced concrete. Studies by Kato et al.
(2009), Kato and Ramm (2013) and Amir (2013) seem
to be the only reported cases that address optimization
by employing continuum damage models to consider the
material nonlinear behavior of composites.

The present study, therefore, discusses topology opti-
mization, taking into consideration the elastoplastic defor-
mation behavior of composites to determine their optimal
material layout, as a way to improve the energy absorption
capacity of a structure through effective use of the material
nonlinearity of composites, as stated earlier.

In addressing optimization, the method of sensitivity
analysis used to take account of the nonlinear behavior of
a structure, and its accuracy, are important. Various stud-
ies (e.g., Kleiber et al. (1997); Kleiber and Kowalczyk
(1996); Ohsaki and Arora (1994); Schwarz and Ramm
(2001); Maute et al. (1998); Schwarz et al. (2001); Zhang
and Kiureghian (1993); Hisada (1995)) have reported find-
ings regarding methods of deriving sensitivity relevant to
plastic materials.

A challenge in dealing with plastic materials is that their
stress-strain relations become undifferentiable when they
reach their yield point or unloading point, making it diffi-
cult to correctly evaluate their stress sensitivity (derivative
of stress with respect to design variables) at those points.
Although Ohsaki and Arora (1994) study this problem in
detail, they focus only on truss structures. It is therefore
necessary equally to examine continuum structures. The
studies/reports on sensitivity analysis above found condi-
tions necessary to obtain high-accuracy sensitivity to be:
(i) using a consistent elastoplastic tangent modulus in the
Euler-backward integration scheme (Zhang and Kiureghian
1993), and (ii) using a stress-integration method based on
the return mapping algorithm and ensuring that the sensi-
tivity conforming thereto is derived in sensitivity analysis
(Hisada 1995).

Against this background, the present study, based on
the method of deriving stress sensitivity proposed by
Hisada (1995), aims to formulate a new method of sen-
sitivity derivation to maximize the energy absorption
capacity of composites, which is set as the objective
function, and to verify the accuracy of the sensitivity
obtained.

The novelty of this study is that the proposed sensitiv-
ity approach for topology optimization can provide accurate
sensitivity “even without calculating the implicit deriva-
tives with respect to design variables”. Thus, we conduct
neither the analytical direct differentiation method nor ana-
lytical adjoint method. Incidentally, Hisada’s sensitivity
approach premises the calculation of implicit derivatives
with respect to design variables. This is the difference from
our approach.

Furthermore, we derive the proposed sensitivity method
in detail assuming not only the general three dimensional
problem but also a plane stress problem which is more
cumbersome to handle. This contribution may help readers’
understanding and be useful in practice.

The elastoplastic material model used in the present
study is the von Mises elastoplastic material model employ-
ing the linear isotropic hardening law, and for its stress
integration, a backward-Euler integration scheme based on
the return mapping algorithm is employed in which a con-
sistent tangent modulus is used. Details of these are not
given here as they have been provided in many documents,
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though some equations necessary to explain the sensitivity
derivation method are presented in the Appendix at the end
of this paper.

2 Definitions of design variables and regularization

2.1 Definitions of design variables

This section defines the design variables in topology opti-
mization for composites. The proposed topology optimiza-
tion is based on the concept of the Solid Isotropic Micro-
structure with Penalization of intermediate densities, or
SIMP approach (Zhou and Rozvany 1991), extended to
apply to composites. This concept, illustrated in Fig. 1, is
intended to represent the optimal layout of a two-phase com-
posite consisting of two solid phases. The SIMP approach,
which assumes a porous body consisting of a single mate-
rial, defines design variables as material densities set for
each finite element. The present study, on the other hand,
assuming a two-phase composite, replaces design variables
with the volume fraction of the constituents. Therefore, for
the jth of the elements discretized into N(number) finite
elements, the design variable sj (j = 1, 2, · · · , N) can be
defined as follows:

sj = rj

r0
, 0 ≤ sj ≤ 1. (1)

Here, rj represents the volume of phase-2 at the jth element
and r0 represents the volume of the element. This means that
the elements are occupied by phase-1 when sj = 0 and by
phase 2 when sj = 1. In the case of 0 < s < 1, elements of
the two phases are mixed. Using these design variables, inci-
dentally, optimization of a single material (porous material)
can also be performed by replacing the material constant
of phase-2 with that of solid material and setting 0 for the
material constant of phase-1.

j

Fig. 1 Concept of two-phase material optimization

2.2 Regularization of elastoplastic material models

In this study, composite material is simply modeled by the
extended SIMP like approach. Here, the material parameters
in the elastoplastic model are regularized with an interpo-
lation scheme. Appendix A provides three material param-
eters of the elastoplastic model; elastic stiffness tensor C,
work hardening modulus Eh and initial yield stress σy. The
present study sets these effective material parameters using
the design variable sj as follows.

Cj =
{ (

1 − s
η
j

)
C1 + s

η
j C2 C1 ≤ C2(

1 − sj
)η

C1 + {1 − (1 − sj
)η}

C2 C1 > C2

(2)

Eh
j =

{ (
1 − s

η
j

)
Eh
1 + s

η
j Eh

2 Eh
1 ≤ Eh

2(
1 − sj

)η
Eh
1 + {1 − (1 − sj

)η}
Eh
2 Eh

1 > Eh
2

(3)

(
σy
)
j

=
{ (

1 − s
η
j

)
σy1 + s

η
j σy2 σy1 ≤ σy2(

1 − sj
)η

σy1 + {1 − (1 − sj
)η}

σy2 σy1 > σy2
(4)

where η is an exponential parameter. As shown above,
the parameters of two materials are interpolated in smooth
functions. This is called regularization. These equations
are obtained by applying to plastic material a regulariza-
tion method for two-phase material optimization based on
the damage model of the present authors and others (Kato
et al. 2009). This makes the material parameters of each
element dependent on design variables, meaning that the
design variables that control the topology of a structure are
embedded.

3 Setting the optimization problem

The present study sets the energy absorption capacity of
a composite structure subject to plastic deformation as
the objective function and aims to maximize it. Absorbed
energy can be expressed as the total work for displace-
ment of the control point, and the work can be measured by
the area bounded by the load-displacement curve. The con-
straint is that the volume of the material used in the entire
structure should be constant. The objective function f (s)

and the equality constant h (s) are set as follows:

minimize f (s) = −
∫
�

∫ t

0
σ : ε̇ dt d�

= −
∫
�

∫
ε̂

σ : dε d�, (5)

subject to h (s) =
∫
�

sj d� − V̂ = 0, (6)
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where, σ and ε represent the Cauchy stress tensor and the
linear strain tensor, respectively. t and (•̇) represent time and
the time derivative, respectively. ε̂ is the total strain follow-
ing the control point displacement û, V̂ is the volume of
phase-2 in the entire structure, and s is the design variable
(vector) expressed by s = {s1, · · · , sN }.

Note that the objective function above is multiplied by -
1 to form a minimization problem because an optimization
problem is generally set as a minimization problem. The
present optimization problem is solved by employing the
optimality criteria (Patnaik et al. 1995).

4 Derivation of sensitivity

4.1 Derivation of sensitivity of the objective function

This section proposes a method of deriving formulae to eval-
uate the sensitivity of the objective function. The present
study, to solve this nonlinear structural problem quasi-
statically, replaces (5) with the incremental one shown
below, using the pseudo-time (or load step) variable nstep,

f (s) =
nstep∑
n=1

fn (s) , (7)

where, nstep represents the total number of load steps.
fn indicates the value of the objective function obtained
between time n − 1 and time n, and can be expressed as
follows:

fn (s) = −
∫
�

σ n : dεn d�. (8)

Based on the above, the gradient of the objective func-
tion with respect to a specific design variable sj is obtained.
For the sake of simplicity, ∂

∂sj
shall hereafter be expressed

as
(∇sj

)
. First, the gradient of (7) can be calculated as

follows:

∇sj f (s) =
nstep∑
n=1

∇sj fn (s) . (9)

For the gradient of (8), to ensure consistency with subse-
quent explanations, the equation below describes the objec-
tive function value fn+1 obtained between time n and the
current time n + 1,

∇sj fn+1 = −∇sj

⎛
⎝∫

�

σ n+1 : dεn+1 d�

⎞
⎠

= −
∫
�

{(∇sj σ n+1
) : dεn+1 + σ n+1 : ∇sj dεn+1

}
d�. (10)

Note that this paper assumes that the variables at time
n are already known. Since the strain increment dεn+1 is a
variable obtained through structural analysis of the current
time n + 1, its gradient ∇sj dεn+1 cannot be derived explic-
itly. Therefore, ∇sj dεn+1 is called the implicit derivative
term. The present study first eliminates this ∇sj dεn+1 under
the conditions below.

The weak form of the equilibrium equation at time n + 1,
namely, the equation of the principle of virtual work, is as
follows:∫
�

σ n+1 : δεd� − λn+1

∫
	t

t0 · δud	t = 0. (11)

Here, λn+1 indicates the load factor at the current time
and t0 is the reference traction force vector, which is a con-
stant value. Body force is neglected in this study for the
sake of simplicity, without loss of generality of the equa-
tion of equilibrium. Next, since virtual displacement δu and
its corresponding virtual strain δε can be arbitrarily cho-
sen in an equation of virtual work, replacing them with
δε = ∇sj dεn+1 and δu = ∇sj dun+1 in (11) can still satisfy
the equilibrium,∫
�

σ n+1 : ∇sj dεn+1d� − λn+1

∫
	t

t0 · ∇sj dun+1d	t = 0. (12)

The gradient here is not related to the design variable
vector s but to sj , a component of the design variable, and
therefore ∇sj dεn+1 (or ∇sj dun+1) is a tensor of the same
dimension as virtual strain (or virtual displacement). As a
result, there is no dimensional inconsistency, mathemati-
cally, in (12).

After presenting these equations, the present study
assumes a special load condition whereby load affects
the displacement control nodes alone. First, since the dis-
placement element û or its increment dû applied to the
displacement control node is determined as a load condition
regardless of the design variable s, its gradient is expressed
as ∇sj dû = 0. Considering also that the reference traction
force vector t0 is always constant and does not depend on
the design variable s, the displacement increment vector for
the entire control node dun+1 (of dûn+1) can be identified
as t0 ·∇sj dun+1 = 0. This is the integrand of the second left-
hand term of (12). Thus, (12) can be simplified as follows,∫
�

σ n+1 : ∇sj dεn+1d� = 0. (13)

As a result, under this load condition, the second term
of (10) can be eliminated and (10) can be rewritten as
follows,

∇sj fn+1 = −
∫
�

(∇sj σ n+1
) : dεn+1d�. (14)
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With this, the sensitivity of the objective function can be
obtained by identifying the gradient of stress with respect
to the design variable ∇sj σ n+1. Hereafter, ∇sj σ shall be
called stress sensitivity.

Meanwhile, Maute et al. (1998), Schwarz et al. (2001),
and Schwarz and Ramm (2001) also address optimization
problems setting maximization of energy absorption capac-
ity as the objective function. To derive sensitivity, they first
define the stress increment dσ n+1 as:

dσ n+1 = C
ep∗ : dεn+1, (15)

and start by directly differentiating the stress sensitivity as
follows,

∇sj dσ n+1 = ∇sjC
ep∗ : dεn+1 + C

ep∗ : ∇sj dεn+1. (16)

Here,Cep∗ represents the consistent tangent modulus tensor.
Next, they substitute (16) into (10), add (9) and rearrange as
follows:

∇sj f = −
∫
�

∫
ε̂

∫
ε

(
dε : ∇sjC

ep∗ : dε

+2 dε : Cep∗ : ∇sj dε
)
d�. (17)

Moreover, as mentioned earlier, they eliminate implicit
terms by setting a special load condition, so as to propose
an equation to evaluate sensitivity of the objective function
as shown below,

∇sj f = −
∫
�

∫
ε̂

∫
ε

dε : ∇sjC
ep∗ : dεd�. (18)

This equation enables us to obtain sensitivity of the
objective function merely by identifying the gradient of the
tangent modulus tensor ∇sjC

ep∗. It should be noted, though,
that (15), which is the starting point of these processes, is
formulated to identify the equilibrium point in structural
analysis and therefore it may not express the stress incre-
ment correctly. In short, the equation for stress sensitivity
presented by Maute et al. (1998), Schwarz et al. (2001), and
Schwarz and Ramm (2001) does not aim at the sensitiv-
ity of stress that satisfies equilibrium equation. This results
in an accumulation of errors in stress sensitivity as plas-
tic deformation progresses, with particularly large errors
at yield points and the points at which stress changes due
to unloading, etc., or, in other words, in the vicinity of
undifferentiable points.

In other words and strictly speaking, the stress increment
dσ n+1 or the stress σ n+1(= σ n + C

ep∗ : dεn+1) obtained
from (15) don’t satisfy the equilibrium equation although
they satisfy the tolerance of convergence of equilibrium
equation. The final stress which satisfies the equilibrium
equation, denoted as σ

(F)
n+1 later, is calculated after determin-

ing equilibrium point, using obtained nodal displacement
through (22) based on the return mapping algorithm, see

Section 4.3. In that sense, the incremental stress dσ n+1 or
the consistent tangent operatorCep∗ are simply employed as
a “tool” to determine/identify the equilibrium point.

Thus, to ensure the accuracy of the sensitivity evalua-
tion (14), the present study aims to identify the sensitivity
∇sj σ

(F)
n+1 of the stress that satisfies the equilibrium equa-

tion. To summarize, we should directly take a derivative of
σ

(F)
n+1 with respect to a design variable rather than that of

σ n+1 and replace ∇sj σ n+1 in (14) by ∇sj σ
(F)
n+1 .

In this derivation procedure, details of which are pro-
vided in Section 4.3, ∇sj σ (F) shall be updated taking
into consideration the path-dependency in each incremental
step. The procedures for conditional differentiation and for
obtaining stress sensitivity described below are formulated
referring to the work of Hisada (1995).

4.2 Conditional differentiation

This section outlines the concept of conditional differenti-
ation, which is employed in the following section. In con-
ducting optimization using an elastoplastic material model
and incremental analysis, stress σ , for example, can be con-
sidered as a function composed of displacement u (s) and
design variable s. Therefore, σ n+1 at the current time n + 1
can be expressed as

σ n+1 = σ n+1 (un+1 (s) , un (s) , un−1 (s) , · · · ,

u1 (s) , s) . (19)

This equation shows that the objective function in the nth
step is determined not only by un+1 but also by the past
history. With regard to the calculus used to solve such path-
dependent problems, the variation of (19) resulting from the
variation δsj of design variables is as follows:

δσ n+1 = ∂σ n+1

∂un+1
δun+1 + δ∗σ n+1, (20)

where,

δ∗σ n+1 ≡ ∂σ n+1

∂un

δun + ∂σ n+1

∂un−1
δun−1

+· · · + ∂σ n+1

∂u1
δu1 + ∂σ n+1

∂sj
δsj

≡ d∗σ n+1

dsj
δsj . (21)

δ∗σ n+1 fixes only un+1 and represents the variation (con-
ditional variation) of σ n+1 taking into consideration the
variations of all other variables, and d∗σ n+1/dsj similarly
represents conditional variation. For the sake of simplicity,
d∗/dsj shall be expressed as ∇∗

sj
hereafter.
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4.3 Derivation of stress sensitivity

This section explains the procedure used to obtain the stress
sensitivity ∇∗

sj
σ n+1 at the current time n + 1, assuming an

increment from time n to the current time n + 1, using the
values known at time n. In this procedure, the stress sensitiv-
ity and the gradient of relevant values with respect to design
variables are used as the known values for the subsequent
incremental step, which enables updating of stress sensitiv-
ity taking into consideration the history up to then. Here, the
conditional differentiation explained above is used to obtain
gradients with respect to design variables, and gradients
are all set at zero initially. Details of each of the variables
presented in this section are provided in the Appendix for
reference.

First, the final stress at the current time n + 1 is decom-
posed into the deviatoric and volumetric parts,

σ
(F)
n+1 = σ ′ (F)

n+1 + p
(F)
n+1 : I . (22)

Then partially differentiating both sides gives the following:

∇∗
sj

σ
(F)
n+1 = ∇∗

sj
σ ′ (F)

n+1 + ∇∗
sj

p
(F)
n+1 : I , (23)

where, p and I are hydrostatic pressure and 2nd-order iden-
tity tensor, respectively. The two derivative terms on the
right-hand side of (23) are derived separately as follows.
First, we refer to some equations listed in the Appendix to
obtain ∇∗

sj
σ ′ (F)

n+1.
From (62), the plastic multiplier is rewritten by substitut-

ing the final equivalent stress σ̄
(F)
n+1 ,


γ = 3

2


ε̄p

σ̄
(F)
n+1

, (24)

and substituting this into (68) yields a relation of the trial
and final stresses as follows:

σ ′ (F)
n+1 = 1

1 + 2G
γ
σ ′ (T)

n+1. (25)

Here, partially differentiating (25) with ∇∗
sj
yields:

∇∗
sj

σ ′ (F)
n+1 = ∇∗

sj
σ ′ (T)

n+1

1 + 2G
γ
− 2G∇∗

sj
(
γ ) + 2
γ ∇sj G

(1 + 2G
γ )2
σ ′ (T)

n+1. (26)

This indicates that ∇∗
sj

σ ′ (T)
n+1, ∇∗

sj
(
γ ), and ∇∗

sj
G need

to be obtained. ∇∗
sj

G can be easily identified because it is
a component of the elastic modulus tensor of (2). As for
∇∗

sj
(
γ ), conducting partial differentiation of (24) with∇∗

sj

yields

∇∗
sj

(
γ ) = 3

2

⎛
⎜⎝∇∗

sj
(
ε̄p)

σ̄
(F)
n+1

− 
ε̄p ∇∗
sj

σ̄
(F)
n+1(

σ̄
(F)
n+1

)2
⎞
⎟⎠ , (27)

where ∇∗
sj

(
ε̄p) and ∇∗
sj

σ̄
(F)
n+1 are needed. Therefore, the

following shows how to identify the three derivative terms
including ∇∗

sj
(
ε̄p) and ∇∗

sj
σ̄

(F)
n+1, as well as ∇∗

sj
σ ′ (T)

n+1
mentioned above.

First, in accordance with the return mapping algorithm,
we introduce basic equations concerning trial stress and
final stress. Using (64), deviatoric stress can be expressed
as follows:

σ ′ (T)
n+1 = σ ′

n + 2G
ε′. (28)

Using equation (59), an equation to express trial stress can
be obtained as follows:(
σ̄

(T)
n+1

)2 = 3

2

(
σ ′ (T)

n+1 : σ ′ (T)
n+1

)
. (29)

Taking into account its dependence on design variable s,
(71) is rewritten as follows:

σ̄
(F)
n+1 = k

(
ε̄
p
n+1, s

)
. (30)

Based on (70), the relation below for trial stress and final
stress can be obtained,

σ̄
(F)
n+1 = σ̄

(T)
n+1 − 3G
ε̄p. (31)

Then partially differentiating these (28) – (31) yields the
following equations, in order,

∇∗
sj

σ ′ (T)
n+1 = ∇∗

sj
σ ′

n + 2
(∇sj G

)

ε′, (32)

Fig. 2 Finite element mesh used
for verification of sensitivity
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Fig. 3 Stress-strain curves based on Table 1

∇∗
sj

σ̄
(T)
n+1 = 3

2

1

σ̄
(T)
n+1

(
σ ′ (T)

n+1 : ∇∗
sj

σ ′ (T)
n+1

)
, (33)

∇∗
sj

σ̄
(F)
n+1 = ∂k

∂ ε̄
p
n+1

{
∇∗

sj
ε̄
p
n + ∇∗

sj

(

ε̄p

)}+ ∂k

∂sj
, (34)

∇∗
sj

σ̄
(F)
n+1 = ∇∗

sj
σ̄

(T)
n+1−3

(∇sj G
)

ε̄p−3G∇∗

sj

(

ε̄p

)
. (35)

But the equation below is used here,

t ′ ε̄p = t ε̄p + 
ε̄p. (36)

It should be noted that in deriving (32), ∇∗
sj

(

ε′) = 0

is set to zero and local implicit terms are eliminated. Here,
substituting (32) into (33) yields

∇∗
sj

σ̄
(T)
n+1 = 3

2

1

σ̄
(T)
n+1

[
σ ′ (T)

n+1 :
{
∇∗

sj
σ ′

n + 2
(∇sj G

)

ε′}] . (37)

Also substituting (34) into (35), and rearranging them
with respect to ∇∗

sj
(
ε̄p) results in the equation below,

∇∗
sj

(

ε̄p

) =
∇∗

sj
σ̄

(T)
n+1 − ∂k

∂ ε̄
p
n+1

∇∗
sj

ε̄
p
n − ∂k

∂sj
− 3

(∇sj G
)

ε̄p

∂k

∂ ε̄
p
n+1

+ 3G
. (38)

This enables identification of ∇∗
sj

(
ε̄p) using the known

values. Thus, ∇∗
sj

σ̄
(F)
n+1 can be obtained by substituting (37)

and (38) into (35).

Table 1 Material parameters for verification of sensitivities

Material 1 Material 2

Young’s modulus E 30(MPa) 1960(MPa)

Poisson’s ratio ν 0.3 0.3

initial yielding stress σy 1.0(MPa) 2.9(MPa)

hardening modulus Eh 10(MPa) 900(MPa)

Finally, ∇∗
sj

σ
(T)
n+1 can be obtained by partially differenti-

ating (64) with ∇∗
sj
as follows:

∇∗
sj

σ
(T)
n+1 = ∇∗

sj
σ n + ∇sjC : (εn+1 − εn) . (39)

Note that here again ∇∗
sj

(
ε) is set to zero and
local implicit terms are eliminated. Now that ∇∗

sj
(
ε̄p),

∇∗
sj

σ̄
(F)
n+1, and ∇∗

sj
σ ′ (T)

n+1 have all been obtained, the final

deviatoric stress sensitivity∇∗
sj

σ ′ (F)
n+1, as shown in (26), can

be identified.
Meanwhile, hydrostatic pressure is expressed as p

(F)
n+1 =

1
3 tr
(
σ

(F)
n+1

)
, and the relation below is derived from (66),

∇∗
sj
tr
(
σ

(F)
n+1

)
= ∇∗

sj
tr
(
σ

(T)
n+1

)
= tr

(
∇∗

sj
σ

(T)
n+1

)
. (40)
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Based on this, the sensitivity of hydrostatic pressure can be
expressed as follows:

∇∗
sj

p
(F)
n+1 = 1

3
tr
(
∇∗

sj
σ

(T)
n+1

)
. (41)

By substituting (39) into this equation, the sensitivity1 of
hydrostatic pressure can be obtained.

Thus, the final stress sensitivity∇∗
sj

σ
(F)
n+1 can be obtained

by substituting ∇∗
sj

σ ′ (F)
n+1 and ∇∗

sj
p

(F)
n+1 identified here into

(23). And by using this in (14), the sensitivity of the objec-
tive function which is consistent with the stress that satisfies
the equilibrium equation obtained by implicit integration,
can be obtained.

4.4 Stress sensitivity for plane stress condition

In the previous section, derivation of stress sensitivity
assuming a return mapping algorithm for a general three
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Fig. 7 Accuracy of sensitivities for case3 (shear+bending II)

dimensional problem was presented. In this section, we for-
mulate it assuming a plane stress problem, which is a little
bit troublesome to handle but is useful in practice. The
expression of a return mapping algorithm for plane stress
problem is referred to Appendix B (B2), which is based on
Simo and Huches (1998).

First of all, we take a derivative of (77) with respect to
a design variable utilizing a conditional derivative ∇∗

sj
as

follows:

1

2
∇∗

sj
ξ − 2

3
k ·
(

∂k

∂ε̄
p
n+1

∇∗
sj

ε̄
p
n+1 + ∂k

∂sj

)
= 0. (42)

Here, ∇∗
sj

ξ and ∇∗
sj

ε̄
p
n+1 can be obtained by taking a

conditional derivative of (83) and (78), respectively,
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underlying displacements of control node
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Next, a derivative of the trial stress ∇∗
sj

σ̂
(T)
n+1 shown in

Appendix B can be written by eliminating the local implicit
derivative term, namely to be ∇∗

sj

(

ε̂
) = 0, as follows:

∇∗
sj

σ̂
(T)
n+1 = ∇∗

sj
σ̂n +

(
∇∗

sj
C
)


ε̂. (45)

As can be seen, (45) consists of the explicit derivative terms
only. Thus, (42) together with (43), (44) can be solved
simultaneously for the unknown ∇∗

sj
(
γ ).

Furthermore, taking a conditional derivative of (74), (84),
(85) yields,

∇∗
sj

σ̂
(F)
n+1 =

(
∇∗

sj
A
)

σ̂
(T)
n+1 + A
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(46)

where
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and
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A∗
11 = −

3(1 − ν)
{(

∇∗
sj

E
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γ + E∇∗
sj

(
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,

∇∗
sj

A∗
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sj
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22. (48)

Finally, the stress sensitivity of the final stress ∇∗
sj

σ̂
(F)
n+1

can be obtained by substituting ∇∗
sj

(
γ ) into (46)–(48).
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5 Accuracy verification of derived sensitivity

5.1 Method of verification

This section presents comparative verification of the accu-
racy of the sensitivity of the objective function which is
formulated in 4.3. The target of comparison is the sensi-
tivity obtained by the finite difference method (FDM) as
described below,

∇sj f = f (s + 
s̃) − f (s)


sj
; 
s̃i = δij
sj . (49)

Here, δij represents the Kronecker delta, 
sj is a finite per-
turbation in design variable, and 
s̃ is a vector with all
components zero except the jth component, which has 
sj .
The value of perturbation 
sj is always 1.0×10−7 in this
study.

Hereafter, the sensitivity obtained by the proposed meth-
od is referred to as “analytical sensitivity” to be distin-
guished from the “sensitivity” obtained by the FDM.
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Fig. 13 Accuracy of sensitivities for case 5; û = 150mm
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Fig. 14 Finite element mesh used for numerical calculation

5.2 Analysis models and conditions

This section describes the models used to verify the
accuracy of sensitivity analysis and load conditions. As
well known, sensitivity analysis using the finite difference
method (FDM) requires a massive amount of calculation,
and therefore we here set a small number of design vari-
ables, or, in other words, use a small number of elements. To
be specific, we use a model composed of 200, eight-noded
quadrilateral elements, assuming plane stress conditions.
The exponential parameter η = 3 is used for each case.

As shown in Fig. 2, each element is assigned an element
number. These numbers are assigned just to make Fig. 2
clearer and are irrelevant to the actual element numbers
used in the finite element analysis. As a two-phase compos-
ite is assumed, the parameters of the constituent materials
are presented in Table 1 and Fig. 3. Plastic material 1
and plastic material 2 represent rubber and polypropylene,
respectively. Plastic material 2 reaches its yield point with
a strain of around 0.1 to 0.2%, causing plastic deformation.
For these common materials and domain, we set three dif-
ferent constraints/load conditions below with the intention
of obtaining different typical deformations.

Case 1 Tension Fig. 4(a) shows the conditions for tensile
deformation. The boundary on the left side of the struc-
ture is completely fixed, and the boundary on the right side
is controlled to ensure that displacement in the x-direction
shows the same value at all nodes on the boundary. As to
load, within the range specified in the figure, uniformly dis-
tributed load of t0 = 1.0N/mm is applied in the right-hand

Table 2 Material parameters

Elastic Plastic

Young’s modulus E 1960 (MPa) 1960(MPa)

Poisson’s ratio ν 0.3 0.3

initial yielding stress σy ∞(MPa) 2.9(MPa)

hardening modulus Eh ∞(MPa) 900(MPa)
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Fig. 15 Optimization results for
case 1 (tension): (left) elastic,
(right) plastic
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direction. The control point of the displacement control
method is set to be the node at the upper right end. The
increment of displacement is 1mm and the number of all
load steps is n = 100 (total amount of displacement û =
100mm). The initial set of design variable for each element
is 0.5.

Case 2 Shear bending I Fig. 4(b) shows the conditions for
shear bending deformation. The boundary on the left side
of the structure is completely fixed, and the boundary on
the right side is controlled to ensure that displacement in
the x-direction is fixed while displacement in the y-direction
shows the same value at all nodes on the boundary. As to
load, within the range specified in the figure, uniformly dis-
tributed load of t0 = 1.0N/mm is applied in a downward
direction. The control point of the displacement control
method is the node at the upper right end. The increment
of displacement is 1mm and the number of all load steps is
n = 100 (total amount of displacement û = 100mm). The
initial set of design variable for each element is 0.5 again.

Case 3 Shear bending II Here, we set the conditions
shown in Fig. 4(c) for another form of shear bending defor-
mation. This analysis model represents so-called three-point
bending. Uniformly distributed load of t0 = 1.0N/mm is
applied in a downward direction, and the y-direction dis-
placement of all nodes on the boundary to which load is
applied is controlled similarly to the two above cases. The
control point of the displacement control method is the node
at the upper right end. The increment of displacement is
1mm and the number of all load steps is n = 100 (total
amount of displacement û = 100mm). The initial set of
design variable for each element is the same as case 1 and 2.

Case 4 Initial value dependency In this verification, ini-
tial value dependency using the various sets of initial design
variables is focused. We employ the same condition of Case
1 and replace the initial design variable 0.5 by 0.1 and 0.9.

Case 5 Path-dependency In this verification, the influence
of the degree of controlled nodal displacement û is inves-
tigated. We employ the same condition of Case 1 and vary
the total displacement controlled for û = 1, 50, 150mm in
addition to û = 100mm of case 1, see Fig. 8. We assume
that û = 1mm is under elastic, û = 50mm is under
moderate plastic range and û = 150mm is considerably
severe plastic deformation. This verification can be inter-
preted as the investigation of the accuracy of sensitivity for
path-dependency.

5.3 Results of verification

First of all, we compare the sensitivities obtained by the
finite difference method and by the analytical method under
each load condition of case 1 to 3. Figs. 5, 6 and 7 show
the results of the three cases of tension and shear bending I
and II, respectively. All these figures have the element num-
ber plotted on the abscissa and the sensitivity of the initial
optimization step on the ordinate, showing how close the
sensitivity obtained at each element is to the correct value.
These figures reveal that the two curves drawn for the sen-
sitivities obtained by the finite difference method and by
the analytical approach mostly overlap each other. Note that
the elements presenting particularly strong sensitivity must
generate remarkable plastic deformation so as to contribute
to the improved absorption energy, which is the objective
function.
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Fig. 16 Optimization results for
case 2 (shear+bending I): (left)
elastic, (right) plastic
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In the next, Figs. 9 and 10 display the results for
case 4 employing the initial design variable 0.1 and 0.9,
respectively. These results also show the high accuracy of
sensitivity by the proposed analytical method.

Finally, Figs. 11, 12 and 13 introduce the results for
case 5 applying û = 1, 50, 150mm, respectively. As can
be seen, the obtained sensitivities always have a high accu-
racy over the entire range from elastic to considerably severe
plastic condition. If pressed to say, errors of sensitivity in
Fig. 11 would seem to be slightly larger than those in others
although the maximum error in Fig. 11 is at most 0.8%. This
is simply because the values of sensitivity ∇sj f in Fig. 11
are relatively small compared to other cases. This relative
error is not the true nature of the present verification.

Based on these results, we can conclude that sensitiv-
ity analysis by the proposed method has a high accuracy
and is applicable for path-dependent problem. These results
also support the validity of the structural topology obtained,
in the examples of optimization calculation to be presented
later.

6 Examples of optimization calculation

6.1 Analysis models and conditions

This section uses a number of optimization examples to
verify the performance and validity of the structural opti-
mization, taking into consideration the nonlinear materials

proposed in this method, and examine how the history of
plastic deformation or path-dependency is reflected in the
final topology. In the numerical examples below, common
finite element models and load conditions are used. Fig. 14
shows the finite element mesh used for calculation. All the
conditions of this model are the same as those of the model
with 200 elements used in 5.2, except that the number of
elements for this model is expanded to 5000 in order to
obtain smooth topology. The exponential parameter η = 3
is always used for the examples.

Before verifying the topology optimization for specific
composites, we conduct similar example calculations of
optimization for porous materials composed of a single
material and show the results. This is because it is known
that a composite, even in an elastic regime, may provide
an optimization topology greatly different from that of a
porous material, depending on the values of the parameters
of constituent materials (Bogomolny and Amir 2012), and
therefore the results from optimization of composites alone
may make it difficult to conceptually understand the validity
of the proposed method.

6.2 Examples of optimization calculation using porous
materials

Here, we observe how plastic deformation that occurs in
the structure of a porous material affects the final topol-
ogy. Table 2 shows the material parameters of elastic and
plastic materials, which are similar to those of plastic
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Fig. 17 Optimization results for
case 3 (shear+bending II): (left)
elastic, (right) plastic
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material 2 presented in 5.2. For the elastic material, we
set a sufficiently large value for yield stress so as to pre-
vent the material yielding. Incidentally, when an elastic
material is used, maximization of energy absorption capac-
ity means the same as maximization of stiffness. Figs. 15,
16 and 17 show the results for the three conditions (ten-
sion, shear bending I and II), respectively. As reference,
Fig. 18 shows the changes in the values of objective function
when the plastic material of case 1 is used. Because similar
results are reported regarding the changes in the objective
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Fig. 18 Changes in value of objective function

function values in other cases, they are omitted here to save
space.

In these results, the distribution figure of each equiva-
lent plastic strain, namely Figs. 15 to 17(c), shows a large
plastic strain appearing in the plastic material, along the
elements at which solid material is placed, while the dis-
tribution figure of equivalent stress, namely Figs. 15 to
17(b), shows that stress increase is regulated more in plas-
tic material than in elastic material. This indicates that
despite having the same stiffness as the elastic material,
plastic material alone unquestionably causes yielding and
its deformation is mostly attributable to plastic deforma-
tion. Meanwhile, under all load conditions, the topologies
obtained after optimization were almost the same in both
cases: using elastic material, and using plastic material.
This is probably because both cases (when either material
is used) have a common overall tendency for the elements

Table 3 Material parameters

Material 1 Material 2

Young’s modulus E 210(GPa) 72(GPa)

Poisson’s ratio ν 0.3 0.3

initial yielding stress σy 100(MPa) 505(MPa)

hardening modulus Eh 400(MPa) 1600(MPa)
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subject to greater stress to have greater strain, resulting in
stronger sensitivity being displayed, and thus end up with
similar topologies as the optimum solution.

These results were obtained thanks largely to the mathe-
matical approach ensuring high accuracy, which is surely a
solid achievement of the present study.

6.3 Examples of optimization calculation using
composites

Here, we focus on structural design in which the constituent
materials of a composite have more realistic and complex
nonlinearity. Table 3 shows parameters of the materials
used, which are designed to have their stress-strain curves
cross each other as shown in Fig. 19. Parameters were set
in reference to those of low-yield-point steel (JFE-LY-100)
for plastic material 1 and extra super duralumin (A7075)
for plastic material 2. In dealing with these materials, it is
impossible to uniformly identify which material contributes
to the objective function, and the sensitivity at each ele-
ment depends greatly on the amount of strain. It is therefore
expected that if the degree of plastic deformation changes
according to the total amount of displacement given to
the displacement control point, the optimal topology will
also vary greatly. This is a fundamental problem in ver-
ifying whether the proposed approach is able to evaluate
path-dependency correctly.

Based on these, we set two values, û = 1.0mm and
û = 100mm, for the total displacement at the displacement
control point, and compare the optimization results in the
case in which elastic deformation is dominant and that in
which plastic deformation is dominant. The total displace-
ment of 100mm is the same value as that set for porous
materials in 5.2 and the previous section. Figs. 20, 21 and
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Fig. 19 Stress-strain curves

22 show the results for the three conditions (tension, shear
bending I and II), respectively.

First, looking at the results under the condition of tensile
deformation, we can see in Fig. 20(a) a topology in which
the two materials form completely inverted shapes, though
with slight variations in shape depending on the degree of
displacement at the control point and the degree of plastic
deformation in structure. In mechanical interpretation, this
indicates that when there is little deformation in the struc-
ture, plastic material 1, which has higher initial stiffness,
serves effectively as the main material in maximizing stiff-
ness of the structure, while as deformation becomes greater,
the more flexible plastic material 2 increases its importance
in maximizing energy absorption capacity. We can therefore
conclude that these results reflect the characteristics of com-
posites consisting of materials with stress-strain curves that
cross, and that these are the mechanically valid results of
optimization. The validity of these results can also be con-
firmed in Fig. 20(b), which shows that the material playing
the major role at each displacement carries greater stress
than the other material.

Next, for shear bending I, we can see in Fig. 21(a) a
tendency similar to the case of tensile deformation for the
materials to form inverted shapes, but we also find the topol-
ogy becoming complex at control point displacement of 100
mm. Unlike the case of tensile deformation, which causes
a large amount of deformation uniformly to all elements,
in the case of shear bending I the amount of strain varies
among the elements, with values distributed either large or
small within the design domain. This means that, for the
elements that develop large plastic deformation or the ele-
ments that develop little deformation, it is easy to determine
which material is effective, while for the domain involving
elements that show an in-between level of strain, not very
large nor very small, topology should be determined taking
into consideration highly delicate structural behavior. Thus,
the seemingly complex topology of Fig. 21(a) is the result of
using the proposed method to quantitatively obtain a certain
optimum solution to a mechanical problem that is difficult
to understand intuitively. Incidentally, this calculation par-
tially failed to achieve complete convergence of ‘0-1’ and
left some gray scale areas in the topology. This is proba-
bly because the difference in sensitivity is indistinguishable
in such areas for the reason mentioned above, which was
inevitable in complex problem settings. To theoretically
accept such generated gray scale, employing homogeniza-
tion or other technique to make the material parameters for
the gray scale physically assurable may be effective. But we
leave this issue for future study.

Finally, for shear bending II, we can see in Fig. 22 the
same tendency as Fig. 21 for its complex topology and
the gray scale remaining. Comparison of the left figure in
Fig. 22(a) with that in Fig. 17(a) indicates how difficult to
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Fig. 20 Optimization results for
case 1 (tension) : (left)
û = 1mm, (right) û = 100mm
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understand the meaning of the obtained topology in com-
posite even for the elastic case. This is because that although
material 2 is a minor role in the elastic range, but it trans-
fers stresses substantially over the structure unlike void; this
causes in the seemingly complex topology.

Here, the authors would like to emphasize that accu-
racy of sensitivity is very important especially for composite
material, because only the accuracy of sensitivity may be
the reliable information to judge the validity of the complex
optimized topology. We believe that the proposed method

Fig. 21 Optimization results for
case 2 (shear+bending I): (left)
û = 1mm, (right) û = 100mm
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Fig. 22 Optimization results for
case 3 (shear+bending II): (left)
û = 1mm, (right) û = 100mm
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can satisfy this request not only for elastic but also severe
plastic deformation.

These results can be summarized as follows: Setting
problems designed to generate optimization topologies that
vary greatly depending on the difference in the extent of
deformation, we have obtained results that are consistent
with the background settings of such problems. This demon-
strates that the path-dependency of plastic deformation is
correctly considered in the present method.

7 Conclusion

The present study aimed to develop a topology optimiza-
tion method taking into account the material nonlinearity of
composites, setting maximization of the energy absorption
capacity of a structure as its objective function. Targeting
an isotropic elastoplastic model made by employing the von
Mises yield criterion, we first regularized the parameters
of each material by extending the concept of multiphase
material optimization to the elastoplastic material model.
We then introduced stress sensitivity consistent with the
return mapping algorithm as a sensitivity analysis method,
taking into consideration the elastoplastic behavior of a
composite, and proposed analytical sensitivity formulae

with respect to design variables of the objective function.
Finally we conducted comparative verification of the sen-
sitivity obtained by the method proposed in the present
study, and the sensitivity obtained by the finite difference
method. After confirming that the proposed method assures
sufficient accuracy, we conducted some example numeri-
cal calculations of optimization. The findings from these
calculation examples are as follows:

• The sensitivity derived in the present study was of accu-
racy as high as the sensitivity obtained by the finite
difference method. This illustrated the fact that stress
sensitivity conforming to the stress integration accord-
ing to the return mapping algorithm is crucial to secure
the accuracy of sensitivity in optimization problems
addressing elastoplastic materials.

• The proposed method in the present study does not need
the calculation of implicit derivatives with respect to
design variables. This makes coding much easier and
reduces the computational costs considerably. However,
the proposed method is applicable only when the exter-
nal load is subject to the nodes at which the controlled
DOFs of displacement are defined. This would be a fun-
damental reason for no implicit dependency. Although
this limitation is involved, the proposed method may
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be quite useful because we often meet such a structural
situation in practice.

• By employing the method proposed in the present study,
mechanically reasonable topologies were obtained in
all the optimization calculation examples. In particular,
positive results were obtained even in cases where plas-
tic deformation was dominant in the material, proving
that the proposed method is an effective optimiza-
tion method capable of taking into consideration the
path-dependency.

• Introducing the proposed method is expected to enable
design of a composite or composite structure mak-
ing effective use of the mechanical characteristics of
each constituent material. Meanwhile, some optimiza-
tion calculation examples showed a topology with some
gray scale areas partially left. Such gray scale appeared
at the elements where it is not clear which material
contributes more to the improvement of the objective
function, and is likely to occur in cases when the con-
stituent materials used form stress-strain curves which
cross. In fact, this gray scale phenomenon is a rea-
sonable result, considering the settings of the relevant
optimization problem.

Appendix A: Isotropic elastoplastic material model

The isotropic elastoplastic material, the return mapping
algorithm and the consistent tangent modulus used in the
present study are already well known and therefore detailed
description of them is not necessary. However, since many
of these relational equations are cited in the main text to
analytically derive sensitivity in the approach formulated by
the present study, we provide outlines of them in Appendix.

First, in elastoplastic deformation, the total strain tensor
ε is expressed as the sum of the elastic strain tensor εe and
the plastic strain tensor εp as follows:

ε = εe + εp. (50)

Assuming that Hooke’s law is effective during plastic defor-
mation, the equation below can be obtained,

σ̇ = C : (ε̇ − ε̇p
)
. (51)

Here, σ and C represent the Cauchy stress tensor and the
elastic stiffness tensor, respectively, which are expressed
in the velocity form herein for the sake of convenience.
Assuming, by employing the von Mises yield criterion, that
the yield stress changes depending only on the equivalent
plastic strain ε̄p, the yield function � can be obtained as
follows by using the hardening function k (ε̄p),

�
(
σ ′, ε̄p

) = 1

2
σ ′ : σ ′ − 1

3
k2
(
ε̄p
)
. (52)

Here, σ ′ and ε̄p represent the deviatoric stress tensor and the
equivalent plastic strain, respectively. To make it convenient
to employ the return mapping algorithm described later, the
yield function is presented here in squared form. Although
the hardening law for a plastic material model can be set in
various ways according to the actual material, the present
study assumes a simple, rate-independent, isotropic harden-
ing law, and provides the hardening law k (ε̄p) as follows:

k
(
ε̄p
) = σy + Ehε̄p, (53)

where, σy and Eh represent the initial yield stress and the
work-hardening modulus, respectively. Although a specific
hardening law to be used for calculation is presented here,
the sensitivity analysis in 4.3 describes the general harden-
ing law in which the hardening law is represented by k (ε̄p).
However, kinematic hardening is not considered. From (52),
the equation below is derived,

∂�

∂σ
= σ ′. (54)

This demonstrates that the plastic flow direction coincides
with the direction of deviatoric stress σ ′. Therefore, the
plastic strain rate ε̇p is obtained with γ̇ as the coefficient,

ε̇p = γ̇σ ′. (55)

This shows an associated flow rule in the flow theory, and γ

shall hereafter be called the plastic multiplier. Regarding the
plastic-strain work rate Ẇ p, the relation below is assumed,

Ẇ p = σ : ε̇p ≡ σ̄ ˙̄εp, (56)

where, σ̄ and ˙̄εp represent the equivalent stress and the
equivalent plastic strain rate, respectively. After determin-
ing the inner product of the both sides of (55) and σ ,
and using the relation of (56), we can obtain the equation
below,

γ̇ = 3

2

˙̄εp
σ̄

. (57)

In the derivation of (57), the following equations are used,

σ̄ 2 = 3

2

(
σ ′ : σ ′) , (58)

σ ′ : σ ′ = σ : σ ′. (59)

Appendix B: Return mapping algorithm

B1: The general three dimensional expression

Incremental analysis employing an elastoplastic model
assumes incremental steps from time n to n + 1. Subscript
letters n and n + 1 represent the values at respective times.
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(51), (55) and (57) are expressed with respect to increment
as follows:

σ n+1 = σ n + C : (
ε − 
εp
)
, (60)


εp = 
γ σ ′
n+1, (61)


γ = 3

2


ε̄p

σ̄n+1
. (62)

Substituting (61) and (62) into (60) results in the equation
below,

σ n+1 = σ n + C : 
ε − 3

2


ε̄p

σ̄n+1
C : σ ′

n+1. (63)

Here, the known terms at time n are replaced with trial stress
as follows:

σ
(T)
n+1 = σ n + C : 
ε. (64)

From this, the relation of trial stress and the final stress in
return mapping can be obtained,

σ
(F)
n+1 = σ

(T)
n+1 − 3

2


ε̄p

σ̄
(F)
n+1

C : σ ′ (F)
n+1, (65)

where, superscript letters (T) and (F) represent trial stress
and the final stress, respectively. (64) obtains the trial stress
at time n + 1 using the elastic stiffness tensor C. Since the
equation below is derived from (65),

tr
(
σ

(F)
n+1

)
= tr

(
σ

(T)
n+1

)
(66)

Equation (65) can be replaced with a equation of deviatoric
stress below, using the shear elastic modulus G,

σ ′ (F)
n+1 = σ ′ (T)

n+1 − 3

2


ε̄p

σ̄
(F)
n+1

2G σ ′ (F)
n+1. (67)

This can be rearranged into

σ ′ (F)
n+1 = σ̄

(F)
n+1

σ̄
(F)
n+1 + 3G
ε̄p

σ ′ (T)
n+1, (68)

demonstrating that the final deviatoric stress σ ′ (F)
n+1 can be

expressed with a scalar multiple of the trial deviatoric stress
σ ′ (T)

n+1. Moreover, because the ratio of the norm of devi-
atoric stress is equal to the ratio of its equivalent stress,

σ ′ (F)
n+1 = σ̄

(F)
n+1

σ̄
(T)
n+1

σ ′ (T)
n+1 (69)

can be obtained. In short, (69) obtains the final stress by cor-
recting the trial stress in a radial direction in the deviatoric
stress space. From (68) and (69), a conditional equation for
the equivalent stress that makes σ ′ (T)

n+1 coincide with σ ′ (F)
n+1

is obtained,

σ̄
(T)
n+1 = σ̄

(F)
n+1 + 3G
ε̄p. (70)

Here, because the equivalent stress during plastic defor-
mation coincides with the yield stress, or hardening law
k
(
ε̄
p
n+1

)
,

σ̄
(F)
n+1 = k

(
ε̄
p
n+1

)
(71)

can be obtained. Moreover, the equivalent plastic strain
at time n + 1ε̄pn+1 can be explained as follows, using its
increment 
ε̄p,

ε̄
p
n+1 = ε̄

p
n + 
ε̄p. (72)

Thus, substituting (71) and (72) into (70) and rearranging
them results in


ε̄p = 1

3G

{
σ̄

(T)
n+1 − k

(
ε̄
p
n + 
ε̄p

)}
, (73)

where 
ε̄p is the only unknown variable. 
ε̄p can be
obtained by solving this equation, though when a nonlinear
hardening law is employed for the material model, it should
be obtained by conducting repetitive calculation according
to the Newton-Raphson method, etc. Then, by substituting
the obtained 
ε̄p into (70), σ̄

(F)
n+1 can be obtained. More-

over, by substituting 
ε̄p and σ̄
(F)
n+1 into (62) and (68)

respectively, 
γ and σ ′ (F)
n+1 can be obtained.

B2: Plane stress expression

For a return mapping algorithm assuming a plane stress
condition, specified constraints on stress components are
considered unlike a general three dimensional problem. For
this, we describe the return mapping formulation for a plane
stress condition, assuming a plasticity model which has only
in-plane components of stress and strain as state variables.
Incidentally, the present paper refers to the expression for
the plasticity model described in section 3.4 of Simo and
Huches (1998). We apply the general isotropic linear hard-
ening law without kinematic hardening for this study and
describe it in the matrix formulation.

First of all, the relation between the final stress and the
trial stress can be written as follows:

σ̂
(F)
n+1 = [C + 
γP ]−1 Cσ̂

(T)
n+1 (74)

where ˆ(•) means a vector of which the components are
occupied by in-plane components only, such as σ̂ =
{σ11 σ22 σ12}T. C and P are the linear elastic constitutive
matrix and the projection matrix, respectively, given by

C = E

1 − ν2

[
1 ν 0
ν 1 0
0 0 1−ν

2

]
, (75)

P = 1

3

[
2 −1 0

−1 2 0
0 0 6

]
. (76)
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Next, the yielding condition is expressed as

�̂ = 1

2

(
σ̂

(F)
n+1

)T
P σ̂

(F)
n+1 − 1

3
k2
(
ε̄
p
n+1

) = 0, (77)

and the evolution law of ε̄
p
n+1 can be written as follows:

ε̄
p
n+1 = ε̄

p
n + 
γ

√
2

3

(
σ̂

(F)
n+1

)T
P σ̂

(F)
n+1. (78)

Therefore, (74), (77), (78) can be gathered into one scaler
nonlinear equation for an unknown 
γ as follows:

�̂ = 1

2
ξ (
γ ) − 1

3
k2

(
ε̄
p
n + 
γ

√
2

3
ξ (
γ )

)
= 0, (79)

where

ξ (
γ ) =
(
σ̂

(T)
n+1

)T
AT (
γ ) PA (
γ ) σ̂

(T)
n+1, (80)

and

A (
γ ) = [C + 
γP ]−1 C. (81)

Finally, determining 
γ by solving the nonlinear (79)
and inserting it into (74) and (78) give the final stress
sensitivity σ̂

(F)
n+1 and the plastic equivalent strain ε̄

p
n+1.

Furthermore, considering the mathematical characteris-
tics of an isotropic condition, matrices P , C and A can be
diagonalized by the same orthogonal matrix Q as,

Q =
⎡
⎣ 1√

2
1√
2
0

− 1√
2

1√
2
0

0 0 1

⎤
⎦ . (82)

Utilizing this diagonalization simplifies (80) and (81) as
follows:

ξ (
γ ) =
(
σ

(T)
11 + σ

(T)
22

)2
6
{
1 + E
γ

3(1−ν)

}2+
1
2

(
σ

(T)
22 − σ

(T)
11

)2 + 2
(
σ

(T)
12

)2
(1 + 2G
γ )2

(83)

A (
γ ) =
[ 1

2

(
A∗
11 + A∗

22

) 1
2

(
A∗
11 − A∗

22

)
0

1
2

(
A∗
11 − A∗

22

) 1
2

(
A∗
11 + A∗

22

)
0

0 0 A∗
33

]
(84)

A∗
11 = 3(1 − ν)

3(1 − ν) + E
γ
, A∗

22 = 1

1 + 2G
γ
, A∗

33 = A∗
22

(85)

Incidentally, the expression of A is referred to de Souza Neto
et al. (2000).

Appendix C: Consistent elastoplastic tangent
modulus

Here, the procedure to obtain a consistent tangent modu-
lus Cep∗ for backward-Euler integration using the variables
obtained by return mapping is described.

First, substitute a 4th-order tensor P that ensures σ ′
n+1 =

P : σ n+1 into (60) and (61), and rearrange them to
obtain

σ n+1 = σ n + C : (
ε − 
γ P : σ n+1)

= σ n + C : (εn+1 − εn − 
γ P : σ n+1) . (86)

Differentiate this equation with respect to time n + 1 to
obtain

d σ n+1 = C : {d εn+1 − d (
γ )P : σ n+1 − 
γ P : d σ n+1} (87)

⇐⇒
(
C

−1 + 
γ P

)
: d σ n+1 = d εn+1 − d (
γ )P : σ n+1 (88)

⇐⇒ d σ n+1 = C
∗ : {d εn+1 − d (
γ ) σ ′

n+1

}
. (89)

Here,C∗ = (C−1 + 
γ P
) −1 is assumed. Similarly, the

equation below is obtained from (71),

d σ̄n+1 = ∂k

∂ ε̄p

∣∣∣∣
n+1

d ε̄
p
n+1

= H ′
n+1 d ε̄

p
n+1, (90)

where, ∂k
∂ ε̄p

∣∣
n+1 = H ′

n+1 is assumed. When the linear hard-

ening law is employed as in the present study, H ′
n+1 = Eh.

Moreover, because ε̄
p
n+1 can be expressed as below using

(62) and (72),

ε̄
p
n+1 = ε̄

p
n + 2

3

γ σ̄n+1, (91)

the derivative at time n + 1 is as follows:

d ε̄
p
n+1 = 2

3
d (
γ σ̄n+1) + 2

3

γ d σ̄n+1. (92)

Substitute this into (90) to obtain(
1 − 2

3
H ′

n+1
γ

)
d σ̄n+1 = 2

3
H ′

n+1 d (
γ ) σ̄n+1, (93)

d σ̄n+1 = 2

3
ω H ′

n+1 d (
γ ) σ̄n+1, (94)

where, ω =
(
1 − 2

3 H ′
n+1
γ

)−1
is assumed.

From (58), the relational equation of deviatoric stress and
equivalent stress at time n + 1 can be obtained as follows:

σ̄ 2
n+1 = 3

2

(
σ ′

n+1 : σ ′
n+1

)
. (95)

Differentiate both sides with respect to time n + 1 and
rearrange them to obtain

σ̄n+1 d σ̄n+1 = 3

4
d
(
σ n+1 : σ ′

n+1

)
(96)

= 3

2
d σ n+1 : σ ′

n+1. (97)
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Note here that one of the σ ′
n+1 on the right-hand side

is replaced with σ n+1, using the relation of (59). Then,
substitute (97) into (94) to obtain

d σ n+1 : σ ′
n+1 = 4

9
ω H ′

n+1 d (
γ ) σ̄ 2
n+1. (98)

And substitute (89) here to obtain

4

9
ω H ′

n+1 d (
γ ) σ̄ 2
n+1 = σ ′

n+1

: [C∗ : {d εn+1 − d (
γ ) σ ′
n+1

}]
, (99)

and rearrange this with respect to d (
γ ), to obtain

d (
γ ) = σ ′
n+1 : (C∗ : d εn+1)

σ ′
n+1 : (C∗ : σ ′

n+1

)+ 4
9 ω H ′

n+1 σ̄ 2
n+1

. (100)

Then substituting this into (89) results in

d σ n+1

= C
∗ :
{
d εn+1 − σ ′

n+1 : (C∗ : d εn+1)

σ ′
n+1 : (C∗ : σ ′

n+1

)+ 4
9 ω H ′

n+1 σ̄ 2
n+1

σ ′
n+1

}

=
{
C

∗ −
(
C

∗ : σ ′
n+1

)⊗ (C∗ : σ ′
n+1

)
σ ′

n+1 : (C∗ : σ ′
n+1

)+ 4
9 ω H ′

n+1 σ̄ 2
n+1

}
: d εn+1

≡ C
ep∗ : d εn+1, (101)

and the C
ep∗ in this equation turns out to be the consistent

elastoplastic tangent modulus.
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Kleiber M, Antúnez H, Hien TD, Kowalczyk P (1997) Parameter sen-
sitivity in nonlinear mechanics, John Wiley & Sons, Chichester,
England, UK

Maute K, Schwarz S, Ramm E (1998) Adaptive topology optimization
of elastoplastic structures. Struct Optim 15:81–91

Ohsaki M, Arora JS (1994) Design sensitivity analysis of elastoplastic
structures. Int J Num Meth Eng 37:737–762

Patnaik SN, Guptill JD, Berke L (1995) Merits and limitations of opti-
mality criteria method for structural optimization. Int. J. Num.
Meth. Eng 38:3087–3120

Schwarz S, Ramm E (2001) Sensitivity analysis and optimization
for non-linear structural response, Engrg Comput, 18, 3/4, 610–
641

Schwarz S, Maute K, Ramm E (2001) Topology and shape opti-
mization for elastoplastic structural response. Comput Appl Mech
Engrg 190:2135–2155

Sigmund O, Torquato S (1997) Design of materials with extreme ther-
mal expansion using a three-phase topology optimization method.
J Mech Phys Solids 45(6):1037–1067

Simo JC, Huches TJR (1998) Computational Inelasticity, Springer-
Verlag New York, Inc.

Stegmann J, Lund E (2005) Discrete material optimization of gen-
eral composite shell structures. Int J Num Meth Eng 62:
2009–2027

Swan CC, Kosaka I (1997) Voigt-Reuss topology optimization for
structures with nonlinear material behaviors. Int J Num Meth Eng
40:3785–3814

Yuge K, Kikuchi N (1995) Optimization of a frame structures sub-
jected to a plastic deformation. Struct Optim 10:197–208

Zhang Y, Kiureghian ADer (1993) Dynamic response sensitivity
of inelastic structures. Comp Meth Appl Mech Eng 108:23–
36

Zhou M, Rozvany GIN (1991) The COC algorithm, part II : Topologi-
cal, geometrical and generalized shape optimization. Comp Meths
Appl Mech Eng 89:309–336


	Analytical sensitivity in topology optimization for elastoplastic composites
	Abstract
	Introduction
	Definitions of design variables and regularization
	Definitions of design variables
	Regularization of elastoplastic material models

	Setting the optimization problem
	Derivation of sensitivity
	Derivation of sensitivity of the objective function
	Conditional differentiation
	Derivation of stress sensitivity
	Stress sensitivity for plane stress condition

	Accuracy verification of derived sensitivity
	Method of verification
	Analysis models and conditions
	Results of verification

	Examples of optimization calculation
	Analysis models and conditions
	Examples of optimization calculation using porous materials
	Examples of optimization calculation using composites

	Conclusion
	Appendix A Isotropic elastoplastic material model
	 Return mapping algorithm
	Appendix B Return mapping algorithm
	B1: The general three dimensional expression
	B2: Plane stress expression
	 Consistent elastoplastic tangent modulus
	Appendix C Consistent elastoplastic tangent modulus
	References


